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Superconducting Qubits
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● Superconducting electrical components  
● Excitations of superconductor forms qubit 

Strengths 

● Integrated in electrical circuit 
● Control with GHz frequencies 
● Great integration into software packages 
● Large number of algorithms 

Open questions 

● Size of system 
● Fidelities 
● Practical use



Trapped Ions
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● Charged particles 
● Electrostatic traps 
● Laser and microwave operations 

Strengths 

● Highest gate fidelities  
● Fast experimental timescales 

Open questions 

● Maximum size 50 qubits so far 
● Challenging scalability 

Important commercial players 

● IonQ (JQI) 
● AQT (Innsbruck) 
● Honeywell (JILA)Monroe group, JQI Maryland

Lucas group, Oxford





Neutral atoms

5

Greiner group, Harvard university

● Neutral laser-cooled particles 
● Optical potentials 
● Single-particle readout and control 

Strengths 

● Many hundreds of particles 
● Enormous flexibility 

Open questions 

● Poor software integration 
● few algorithms 
● few applications outside of physics 

studied

Lukin group, Harvard university



Laser systems 
for potassium 
and sodium

Rack with 
electronics and 

experiment control

Optical table 
with vacuum 

system
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Atoms



1. Atomic clocks — Qubits in cold atoms

2. Optical tweezers — Trapped qubits in atoms

3. Rydberg atoms — Large scale entanglement

4. Moving particles — Bosons vs Fermions and the link to chemistry

5. Lattice gauge theories — Working on a really hard physics problem



What is time ?
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Time is what a clock measures.

Experimentalists dilemma: What is a clock ?

Something that ‚ticks‘, i.e. provides a regular series of events 

Einsteins’ special relativity:



Traditional clocks
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1 tick = 1 day 1 tick = few seconds 1 tick = 0.1 ms

Problems: - Not very stable

- Very slow ticking

- Reproducility



What is a good clock ?
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Stable

repeat with the same clock lots of 
measurements and get similar results

Precise

build several clocks
and obtain same results 

most of the time much, much 
harder to estimate



Characterization of clocks

12

let them tick for a long time compare the result

We need a good standard and atoms give this

What about precision?



Atomic clocks
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Oven Initialisation Read-OutTicking

microwave

1s
2p

|1s⟩ = |0⟩

|2p⟩ = |1⟩

ℋ = E0 |0⟩⟨0 | + E1 |1⟩⟨1 |

The Atom



Atomic clocks
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Oven Initialisation Read-OutTicking

microwave

1s
2p

|1s⟩ = |0⟩

|2p⟩ = |1⟩

ℋ = E0 |0⟩⟨0 | + E1 |1⟩⟨1 |

E = E0 (eiωLt+iφ + e−iωLt−iφ)

The Atom The electric field 



Atomic clocks
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Oven Initialisation Read-OutTicking

microwave

1s
2p

|1s⟩ = |0⟩

|2p⟩ = |1⟩

ℋ = E0 |0⟩⟨0 | + E1 |1⟩⟨1 |

E = E0 (eiωLt+iφ + e−iωLt−iφ)

The Atom The electric field 

Interaction via

d = d (|0ih1|+ |1ih0|)



The atom as a qubit
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Interaction Hamiltonian
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Rotating frame:



Clocks as extremely precise qubits
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Rotation about z-axis 
Detuning  

Rotation about x-axis  
Laser intensity

U = eiℋt/ℏ

Δt =
π
2

Ωxt =
π
2

ℋ = ℏΩx ̂σx ℋ = ℏΩy ̂σyℋ = ℏΔ ̂σz

Ωyt =
π
2

Rotation about y-axis  
Laser intensity with phase 

adjusted

Zπ/2 Xπ/2 Yπ/2



Example: Rabi oscillations
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Rotation about x-axis

Rx



Example: Offresonant Rabi oscillations
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detuning

tilted rotation axis

U2



Back to our atomic clocks
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Oven Initialisation Read-OutTicking

microwave

RzXπ/2 Xπ/2



Application: Time standard with Cesium fountain clock
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Ramsey limitations
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Detection better if atoms are slower



Measuring the red-shift on the millimeter scale

24Bothwell  et al. arXiv:2109.12238 (2021)



Ramsey limitations
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Detection better if atoms are slower

• We know how to perform qubit operation.
• How can we cool these atoms ?
• How can we trap them individually ?



1. Atomic clocks — Qubits in cold atoms

2. Optical tweezers — Trapped qubits in atoms

3. Rydberg atoms — Large scale entanglement

4. Moving particles — Bosons vs Fermions and the link to chemistry

5. Lattice gauge theories — Working on a really physics hard problem



The idea of laser cooling
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Oven at 
several 100K

How to stop the atoms?

several 100 m/s



The idea of laser cooling
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Oven at 
several 100K

How to stop the atoms?

several 100 m/s

Use a laser that 
is stopping it

Microscopic idea of radiation
 pressure

Idea of Laser cooling by Wineland, Dehmelt, Hänsch and Schawlow (1975)

Some really 
cold atoms



The Zeeman slower
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Oven at 
several 100K

Use 
a laser that 

is 

a few m/s

3 . La force agissant sur un atome au repos 15

La force maximale h̄kL°/2 correspond à une accélération amax = h̄kL°/(2m), c’est-à-dire un
changement de vitesse vrec tous les 2°°1. Pour le rubidium, cette accélération vaut 1, 1 105ms°2,
soit 11 000 fois l’accélération de la pesanteur. La première mise en évidence de cette force de
pression de radiation fut la déflexion de jets atomiques par Frisch en 1933 (expériences reprises
en France dans les années 1970 par Picqué et Vialle). C’est dans les années 1980 que cette force
fut utilisée pour ralentir un jet atomique, en particulier dans le groupe de Phillips au NBS
Washington. La vitesse initiale V0 des atomes du jet est de plusieurs centaines de mètres par
seconde, ce qui correspond à une distance d’arrêt V 2

0 /(2amax) de l’ordre du mètre.

!"#$ %&'()

*+,-.,"/01#+
.$$2,3

Fig. 3: Ralentissement d’un jet atomique de sodium par pression de radiation. La variation d’eÆet Doppler
est compensée par un eÆet Zeeman inhomogène, créé par un solénöıde de même axe que le jet atomique.
La figure expérimentale a été obtenue par W. Phillips et son équipe.

Arrêter un jet atomique au moyen de la force de pression de radiation n’est pas aussi simple
qu’il y parâıt : quand la vitesse des atomes diminue, la condition de résonance !L°kL ·V = !A

n’est plus vérifiée, et l’e±cacité du refroidissement chute puisque l’accélération devient petite
devant amax. Pour remédier à ce problème, deux solutions sont couramment utilisées en pratique :

1. La première (figure 3) consiste à faire le ralentissement à l’intérieur d’un solénöıde créant un
champ magnétique inhomogène, tel que le déplacement Zeeman de la transition atomique
en un point d’absisse z soit tel que !L°kLV (z) = !A(z), avec V 2(z) = V 2

0 °2amaxz. Dans
une telle configuration, tous les atomes sortant du four à une vitesse inférieure à V0 sont
ralentis et s’arrêtent au point z0 = V 2

0 /(2amax).

2. La seconde méthode consiste à faire varier temporellement la fréquence !L(t) selon la loi
linéaire !A +kLV0°kLamaxt. Cette méthode est moins performante que la précédente, car
un atome qui sort du four à la vitesse V0 un peu après le démarrage de cette rampe ne
sera quasiment pas ralenti avant la rampe suivante. Ceci allonge notablement la distance
nécessaire pour arrêter tous les atomes sortant du four à une vitesse inférieure ou égale
à V0. De plus les atomes ne s’arrêtent pas tous au même point de l’espace, ce qui rend
moins e±cace l’éventuel remplissage d’un piège atomique. Néanmoins cette technique est
également très utilisée, car elle est notablement plus simple à mettre en œuvre que la
précédente. Ainsi, avec des diodes laser, il su±t de moduler le courant de la diode pour
obtenir le balayage en fréquence recherché. La figure (4) montre un exemple de résultat
obtenu par cette méthode.

3.4 La force dipolaire

Si l’onde lumineuse est constituée par la superposition de plusieurs ondes planes progressives,
l’atome peut absorber un photon k1 dans une onde, et faire une émission stimulée d’un photon

VOLUME 48, NUMBER 9 PHYSICAL REVIEW LETTERS ] MARCH 1982

Laser Deceleration of an Atomic Beam
William D. Phillips and Harold Metcalf '

Electrical Measurements and Standards Division Center for A bsotute I'hyszcal Quantities,
National Bureau of Standards, Vt'ashington, D. C. 20234

(Received 23 December 1981)
Deceleration and velocity bunching of Na atoms in an atomic beam have been observed.

The deceleration, caused by absorption of counterpropagating resonant laser light,
amounts to 40% of the initial thermal velocity, corresponding to about 15 000 absorptions.
Atoms were kept in resonance with the laser by using a spatially varying magnetic field
to provide a changing Zeeman shift to compensate for the changing Doppler shift as the
atoms decelerated.
PACS numbers: 32.90.+a, 32.30.Bv

We report a definitive observation of the decel-
eration and velocity bunching of neutral atoms in
a thermal beam by momentum transfer from a
counterpropagating resonant laser beam. Al-
though ions trapped by electromagnetic fields
have been cooled by laser light, ' such traps are
not deep enough to confine thermal neutral atoms
for similar cooling. A sample of slow neutral
atoms could alleviate problems such as transit
time and second-order Doppler effects in atomic
clocks and precision spectroscopy. They may
also be used for very-low-energy scattering or
be deposited into shallow traps for further cool-
ing.
Frisch first reported the deflection of atoms by

resonant light in 1933,' but the availability of
tunable lasers has recently stimulated new inter-
est in controlling the motion of atoms with light.
Cooling' and trapping of atoms with lasers have
been proposed, and deflection, ' and steering and
focusing, ' of atomic beams with lasers have
been reported.
Although observable deflection can be accom-

plished by scattering a small number of photons,
transfer of the momentum of a large number of
photons is required for the thermal atoms to ex-
perience a significant change of momentum along
the beam direction. The velocity change caused
by scattering n photons resonant with the 3S to
3P transition in Na (yellow D line) is nhv/Mc
=3n cm/s. When the transition is saturated by
resonant light of intensity large compared with
10 mW/cm', so that the atom spends half its
time in the 3P state (lifetime =16 ns), the max-
imum deceleration of a =(3 cm/s)/(32 ns) =10'
cm/s' is achieved. Then atoms with v, = 10' cm/s
are stopped in about 1 ms over a 50-cm path
having scattered about 30000 photons.
Two processes limit deceleration by this meth-

od: Atoms experience a Doppler shift out of reso-

nance with the laser as they slow down, and
atoms are optically pumped. Optical pumping
occurs when atoms are excited from one of the
two Na hyperfine ground states (HFGS) to a 3P
state that decays to the other HFGS. Since these
HFGS are separated by 1.77 GHz and the natural
linewidth is 10 MHz, atoms pumped to this other
HFGS are not resonant with the laser. Both the
Doppler shift and the optical pumping problems
can be solved by using a spatially varying mag-
netic field applied along the laser-atomic-beam
axis. The field both Zeeman tunes the decelerat-
ing atoms into constant resonance with the fixed-
frequency cooling laser and produces selection
rules and Zeeman shifts that strongly discrim-
inate against optical pumping.
We use a circularly polarized cooling laser

tuned to induce the 0' transition from the I=2,
M~= 2 sublevel of the 3S,y, ground state to the E
=3, M~=3 sublevel of the .3P,g, excited state
(neither of these states is mixed by the magnetic
field). In this case the selection rules demand
that transitions occur only between this particu-
lar pair of states with maximum ME. Imperfect
polarization, angular divergence, or misalign-
ment of the laser and magnetic field axes allow
transitions to other than the E=M~=3 excited
state. Nevertheless, if the magnetic field is at
least 0.04 T, either the matrix elements for un-
wanted excitations are so small or those transi-
tions are Zeeman shifted so far out of resonance
that little optical pumping results. For example,
the probability of the & transition from the E=M~
= 2 ground state to the E= 3, M~ = 2 excited state,
much weaker than the 0' transitions at zero field,
is further reduced by a factor of 10 at 0.02 T and
a factor of 100 at 0.05 T. Also, the detuning for
the allowed ~ transition to the I' = 2, Ni~ = 2 state
is 400 MHz at 0.02 T and almost 1000 MHz at
0.05 T. We estimate that the combined effect of

596 1982 The American Physical Society



The MOT
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end stage of molasses dramatically increases the density
of low-temperature atoms in the MOT (Lee, Adams,
Kasevich, and Chu, 1996).

The invention and development of the MOT
exemplifies how the field of laser cooling and trapping

grew out of the combined ideas and cooperation of
an international set of scientists. For this reason, I find
it especially fitting that the magneto-optic trap is the
starting point of most experiments using laser-cooled
atoms.

FIG. 5. The magneto-optic trap for atoms: (a) an F52 ground state and an F53 excited state. The slight energy-level shifts of the
Zeeman sublevels cause symmetry to be broken and the atoms to optically pump predominantly into either the mF512 or the
mF522 state for B,0 or B.0. Once in the optically pumped states, the atoms are pushed towards the B50 region due to the
large difference in relative strengths of the transition rates. The relative transition rates for s1 and s2 light for the mF522 and
m521 states are shown; (b) A photograph of atoms confined in a magneto-optic trap. The line of fluorescence below the ball of
trapped atoms is due to the atomic beam used to load the trap.

692 Steven Chu: Manipulation of neutral particles

Rev. Mod. Phys., Vol. 70, No. 3, July 1998

Steve Chu et al.

static magnetic fields + radiation pressure

VOLUME 59, NUMBER 23 PHYSICAL REVIEW LETTER 7 DECEMBER 1987

rapping o Neutral Sodium Atoms with Ra iation Pressure

E. L. Raab, ' M. P. Prentiss, Alex Cable, Steven Chu a
e a oratories, Holmdel, Ne~ Jersey 07733

(Received 16 July 1987)
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Cooling laser

Atoms

atoms undergo diffusive motion and feel ‚friction’ from collisions with laser 

VOLUME 55, NUMBER 1 PHYSICAL REVIEW LETTERS 1 JUL+ 1985

Three-Dimensional Viscous Confinement and Cooling of Atoms
by Resonance Radiation Pressure

Steven Chu, L. Hollberg, J. E. Bjorkholm, Alex Cable, and A. Ashkin
3Tck TBell Laboratories, Holmdel, New Jersey 07733

(Received 25 April 1985)

We report the viscous confinement and cooling of neutral sodium atoms in three dimensions via
the radiation pressure of counterpropagating laser beams. These atoms have a density of about—10 cm and a temperature of —240 p,K corresponding to a rms velocity of —60 cm/sec. This
temperature is approximately the quantum limit for this atomic transition. The decay time for half
the atoms to escape a —0.2-cm confinement volume is —0.1 sec.
PACS numbers: 32.80.Pj

The deflection of atoms by light resonant with an
atomic transition was observed as early as 1933 by
Frisch. ' Much later Ashkin2 pointed out that laser
light can exert a substantial scattering force on an
atom. He raised the possibility that this force could be
used to trap atoms, and subsequently there have been
numerous proposals to cool and ultimately trap neutral
atoms. 3 Various experiments have been proposed that
would utilize trapped atoms; these generally require
long observation times and/or low atomic velocities.
We report the demonstration of a confinement scheme
based on the damping of atomic velocities. This
scheme is not a trap, but can confine atoms in a small
region in space for times on the order of 0.1 sec, and
cool them to —240 p, K, the quantum limit for our ex-
perimental conditions. For comparison, we note that
two-dimensional radiative cooling has reduced the
temperatures transverse to the motion of an atomic
beam from 40 to 3.5 mK, 4 and atomic beams stopped
by light have resulted in three-dimensional tempera-
tures of 50—100 mK. 5 Laser cooling of electromagnet-
ically trapped ions has resulted in ion temperatures
between 5 and 100 mK. 6
The basic physics of the viscous damping scheme is

briefly outlined. Consider an atom irradiated by a laser
beam tuned near a resonance line. For each photon
absorbed, an atom receives a net change of momen-
tum b,p= h/X, where X is the wavelength. Since the
subsequent reemission of the photon has no preferred
direction, an average of many scattering events gives a
net scattering force along the direction of the light. 2
Hansch and Schawlow7 noted that if counterpropagat-
ing beams were tuned to the low-frequency side of the
absorption line, there would always be a net force op-
posing the velocity of an atom. For example, an atom
moving with velocity + v„will blue shift into reso-
nance with a laser beam propagating towards —x and
red shift out of resonance with the laser beam prop-
agating towards +x. Thus, the atom is more likely to
absorb photons going towards —x. With the use of six
beams along + x, +y, and + z and an averaging over
many absorptions, the net effect is a viscous damping

force F= —nv opposite the velocity of the atom. The
cooling rate is v F= —o;v2. The expression for the
damping force which includes standing waves and sat-
uration has been previously derived. 8

In addition to the average force, statistical fluctua-
tions must be considered. 9 These fluctuations lead to
heating. For a simple picture of the fluctuations, con-
sider the momentum impulses on an atom due to the
absorption and emission of photons. In the absence of
damping, the atoms will execute a random walk in
velocity, and although (v) = 0, (v2) will increase
linearly with the total number scattered photons. In-
creasing (v2) corresponds to heating, as first observed
by Bjorkholm et al. '0 If we equate the heating and
cooling terms, the steady-state kinetic temperature is
obtained. In the absence of stimulated processes, the
minimum kinetic energy for a two-level atom is given
by kT= —,

' hy, where y is the width (FWHM) of the
absorption line. If one includes stimulated processes,
the minimum temperature is increased by a factor of
2.8 For sodium, y = 10 MHZ and Tm;„=240 p,K.
An estimate of the confinement time can be ob-

tained by the observation that the motion of atoms in a
viscous fluid of photons ("optical molasses" ) is analo-
gous to diffusion in classical Brownian motion. The
diffusion constant D is given by the Einstein relation
D = kT/n, and for an infinite medium, D = (x )/2t,
where (x2) is the mean square displacement after time
t However, .an analysis based on an infinite medium
overestimates the storage time. A more appropriate
model is a viscous fluid surrounded by a spherical
boundary (defined by the extent of the laser beams)
such that the atoms that reach the boundary escape. If
we assume an initial uniform concentration of atoms
np, the average concentration n has been shown" to
vary as

6 1 D~2+2g/g 2
/1 =np

77 ~—] U

The spherical-boundary modification of the random-
walk analysis reduces the storage time for our experi-
mental conditions by a factor of 3.1.

1985 The American Physical Society
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Cooling laserCooling laser

Atoms

VOLUME 55, NUMBER 1 PHYSICAL REVIEW LETTERS 1 JUL+ 1985

Three-Dimensional Viscous Confinement and Cooling of Atoms
by Resonance Radiation Pressure

Steven Chu, L. Hollberg, J. E. Bjorkholm, Alex Cable, and A. Ashkin
3Tck TBell Laboratories, Holmdel, New Jersey 07733

(Received 25 April 1985)

We report the viscous confinement and cooling of neutral sodium atoms in three dimensions via
the radiation pressure of counterpropagating laser beams. These atoms have a density of about—10 cm and a temperature of —240 p,K corresponding to a rms velocity of —60 cm/sec. This
temperature is approximately the quantum limit for this atomic transition. The decay time for half
the atoms to escape a —0.2-cm confinement volume is —0.1 sec.
PACS numbers: 32.80.Pj

The deflection of atoms by light resonant with an
atomic transition was observed as early as 1933 by
Frisch. ' Much later Ashkin2 pointed out that laser
light can exert a substantial scattering force on an
atom. He raised the possibility that this force could be
used to trap atoms, and subsequently there have been
numerous proposals to cool and ultimately trap neutral
atoms. 3 Various experiments have been proposed that
would utilize trapped atoms; these generally require
long observation times and/or low atomic velocities.
We report the demonstration of a confinement scheme
based on the damping of atomic velocities. This
scheme is not a trap, but can confine atoms in a small
region in space for times on the order of 0.1 sec, and
cool them to —240 p, K, the quantum limit for our ex-
perimental conditions. For comparison, we note that
two-dimensional radiative cooling has reduced the
temperatures transverse to the motion of an atomic
beam from 40 to 3.5 mK, 4 and atomic beams stopped
by light have resulted in three-dimensional tempera-
tures of 50—100 mK. 5 Laser cooling of electromagnet-
ically trapped ions has resulted in ion temperatures
between 5 and 100 mK. 6
The basic physics of the viscous damping scheme is

briefly outlined. Consider an atom irradiated by a laser
beam tuned near a resonance line. For each photon
absorbed, an atom receives a net change of momen-
tum b,p= h/X, where X is the wavelength. Since the
subsequent reemission of the photon has no preferred
direction, an average of many scattering events gives a
net scattering force along the direction of the light. 2
Hansch and Schawlow7 noted that if counterpropagat-
ing beams were tuned to the low-frequency side of the
absorption line, there would always be a net force op-
posing the velocity of an atom. For example, an atom
moving with velocity + v„will blue shift into reso-
nance with a laser beam propagating towards —x and
red shift out of resonance with the laser beam prop-
agating towards +x. Thus, the atom is more likely to
absorb photons going towards —x. With the use of six
beams along + x, +y, and + z and an averaging over
many absorptions, the net effect is a viscous damping

force F= —nv opposite the velocity of the atom. The
cooling rate is v F= —o;v2. The expression for the
damping force which includes standing waves and sat-
uration has been previously derived. 8

In addition to the average force, statistical fluctua-
tions must be considered. 9 These fluctuations lead to
heating. For a simple picture of the fluctuations, con-
sider the momentum impulses on an atom due to the
absorption and emission of photons. In the absence of
damping, the atoms will execute a random walk in
velocity, and although (v) = 0, (v2) will increase
linearly with the total number scattered photons. In-
creasing (v2) corresponds to heating, as first observed
by Bjorkholm et al. '0 If we equate the heating and
cooling terms, the steady-state kinetic temperature is
obtained. In the absence of stimulated processes, the
minimum kinetic energy for a two-level atom is given
by kT= —,

' hy, where y is the width (FWHM) of the
absorption line. If one includes stimulated processes,
the minimum temperature is increased by a factor of
2.8 For sodium, y = 10 MHZ and Tm;„=240 p,K.
An estimate of the confinement time can be ob-

tained by the observation that the motion of atoms in a
viscous fluid of photons ("optical molasses" ) is analo-
gous to diffusion in classical Brownian motion. The
diffusion constant D is given by the Einstein relation
D = kT/n, and for an infinite medium, D = (x )/2t,
where (x2) is the mean square displacement after time
t However, .an analysis based on an infinite medium
overestimates the storage time. A more appropriate
model is a viscous fluid surrounded by a spherical
boundary (defined by the extent of the laser beams)
such that the atoms that reach the boundary escape. If
we assume an initial uniform concentration of atoms
np, the average concentration n has been shown" to
vary as

6 1 D~2+2g/g 2
/1 =np

77 ~—] U

The spherical-boundary modification of the random-
walk analysis reduces the storage time for our experi-
mental conditions by a factor of 3.1.

1985 The American Physical Society

Doppler limit (lowest ‚possible‘ temperature) TD ⇡ 240µK

observed: T ⇡ 240+200
�60 µK
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Comment by Steve Chu:

periments that slowed atomic beams with laser light,4

but sodium atoms had to be slowed to velocities on the
order of 200–300 cm/sec (essentially stopped!) before an
atom trap could be loaded. Two groups achieved this
milestone in late 1984: a group at the National Bureau of
Standards in Gaithersburg, Maryland, led by Bill Phillips
using a tapered magnetic field (Prodan et al., 1985) and
another NBS group in Boulder, Colorado, led by Jan
Hall (Ertmer et al., 1985). We decided to copy the tech-
nique of Ertmer et al. (1985), and use an electro-optic
generator to produce a frequency-shifted sideband. The
frequency-shifted light is directed against the atoms
coming off the sodium surface, and as the atoms slow,
the frequency is changed in order to keep the light in
resonance with the Doppler shifting atoms.

Leo was better at electronics than I and assumed the
responsibility of the radio-frequency part of the project,
while I set out to build a wideband, transmission line
electro-optic modulator. One of the advantages of work-
ing at Bell Laboratories was that one could often find a
needed expert consultant within the Labs. Much of the
electro-optic modulator development was pioneered at
the Labs in Holmdel in the 1960s and we were still the
leaders of the field in 1983. I learned about making
electro-optic modulators by reading the book written by
a colleague, Ivan Kaminow (1974). I enlisted Larry Buhl
to cut and polish the LiTaO3 crystal for the modulator.
Rod Alferness taught me about microwave impedance
matching and provided the SMA ‘‘launchers’’ needed to
match Leo’s electronics with my parallel-plate transmis-
sion line modulator. One month after we decided to pre-
cool the atoms with a frequency-swept laser beam, we
had a functioning, wideband gigahertz electro-optic
modulator and driver and could begin to precool the
atoms from our puffing source.

In the early spring of 1984, Leo and I started with a
completely bare optical table, no vacuum chamber, and
no modulator. Later that spring, John Bjorkholm, who
had previously demonstrated the dipole force by focus-
ing an atomic beam, joined our experiment. In the early
summer, I recruited Alex Cable, a fresh graduate from
Rutgers. Officially he was hired as my ‘‘technician’’: un-
officially, he became a super-graduate student. In less
than one year, we submitted our optical molasses paper
(Chu, Holberg, et al. 1985).5 The two papers reporting
the stopping of atomic beams (Ertmer et al., 1985;
Prodan et al., 1985) were published one month earlier.

The apparatus we built to demonstrate optical molas-
ses is shown in Figs. 3(a) and 3(b). We had an ultrahigh-
vacuum chamber, but did not want to be hampered by

long bake-out times to achieve good vacuum. Instead,
we built a cryo-shield painted with Aquadag, a graphite-
based substance. When cooled to liquid-nitrogen tem-
peratures, the shield became a very effective sorption
pump: we could open the vacuum chamber one day and
be running by the next day. Fast turnaround time has
always been important to me. Mistakes are unavoidable,
so I always wanted an apparatus that would allow mis-
takes to be corrected as rapidly as possible.

The first signals of atoms confined in optical molasses
showed confinement times of a few tens of milliseconds,
but shortly afterwards we improved the storage time by
over an order of magnitude. Surprisingly, it took us a
week after achieving molasses to look inside the vacuum
can with our eyes instead of with a photomultiplier tube.
When we finally did, we were rewarded with the sight
shown in Fig. 4.

In this early work, the laser beams were aligned to be
as closely counter-propagating as we could manage. A
year later, we stumbled onto a misalignment configura-
tion that produced another order of magnitude increase
in the storage time. This so-called ‘‘super-molasses’’
alignment of our beams also created a compression of
the atoms into a region of space on the order of 2 mm
diameter from an initial spread of 1 cm. We were never
able to understand this phenomenon and, after a num-
ber of attempts, published a brief summary of these re-
sults in conference proceedings (Chu, Prentiss, et al.,
1988; Shevy, Weiss, and Chu, 1989).

In our first molasses work, we realized that the tradi-
tional method of measuring the temperature by measur-
ing the Doppler broadening of an atomic resonance line
would not work for the low temperatures we hoped to
achieve. Instead we introduced a time-of-flight tech-
nique to directly measure the velocity distribution of the
atoms. After allowing the atoms in the molasses to come
to equilibrium, we turned off the light for a variable
amount of time. The fast atoms escaped ballistically dur-
ing this time while the slower atoms were recaptured by
the molasses. This method allowed us to directly mea-
sure the velocity distribution. Our first measurements
showed a temperature of 185 mK, slightly lower than the
minimum temperature allowed by the theory of Doppler
cooling. We then made the cardinal mistake of experi-
mental physics: instead of listening to Nature, we were
overly influenced by theoretical expectations. By includ-
ing a fudge factor to account for the way atoms filled the
molasses region, we were able to bring our measurement
into accord with our expectations.

ON TO OPTICAL TRAPPING

Once we demonstrated optical molasses, we began to
explore ways to achieve our original goal of optically
trapping atoms. As a point of reference, Bill Phillips and
his collaborators had reported the magnetic trapping of
sodium atoms (Migdal et al., 1985) two weeks before our
optical molasses paper came out. Although the 1/e stor-
age of the molasses confinement in our first experiment

4For a comprehensive discussion of the work up to 1985, see
Phillips et al. (1985).

5The components of the experiment were assembled from
parts of previous experiments: the cw dye laser needed for the
optical molasses and the pulsed YAG laser were previously
used in a dye laser oscillator/amplifier system in a positronium
spectroscopy experiment. A surplus vacuum chamber in a de-
velopment section of Bell Laboratories became our molasses
chamber.
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piete extinction 40 ps) thereby releasing the atoms to
travel ballistically in the dark.
The atomic temperature determines the distribution,

in space and time, of the released atoms. Each of our
four methods measures some feature of this distribution.
The temperature is found by comparison of these mea-
surements with calculations obtained by numerical in-
tegration over the assumed 3D Maxwell-Boltzmann ve-
locity distribution of the atoms and the initial, measured
spatial distribution of the atoms in the molasses. The
calculations include such features as the considerable
efl'ect of gravity, the intensity distribution of the laser
beams, and the geometry of the detection process.
The first method is a time-of-flight (TOF) determina-

tion of the temperature. A pair of counterpropagating
beams, derived from the molasses laser (including the
sidebands), form a probe region under the molasses. '

We vary the center-to-center separation d from 1.0 to
1.9 cm. The probe cross section is either a 4-mm-diam
circle or a 4-mm-widex 1-mm-high rectangle, with a
power of 3 mW per beam. An 8.5-mm length of probe,
directly below the molasses, is imaged onto a photomulti-
plier, and the time dependence of the probe-induced
fluorescence is recorded, after the molasses beams are
shut off. Numerical calculations of this TOF signal
show that the time of the peak signal is mainly sensitive
to d and to the temperature, but is relatively insensitive
to other details.
Figure 1 shows a typical TOF signal, averaged for 40

repetitions, at d= 1.1 cm, along with calculated signals.
The data agree with the calculation for 40 pK and are
clearly inconsistent with the "cooling limit" of 240 pK.
For these data 4= —20 MHz; note that at this detuning
Eq. (1) gives 510 pK. Figure 2 shows the variation in
the measured temperature (determined from the time of
the peak of the TOF signal) as a function of 5 for vari-
ous d's. The data are radically different from Eq. (1):
The temperature is minimized for i 6 i much larger than
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FIG. 1. TOF data and calculations. The shaded area indi-
cates the range of error in the 40-p K calculation from
geometric uncertainties. The width of the data is slightly
larger than the calculation, presumably because of shot-to-shot
instabilities.
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FIG. 2. T vs h, by TOF for various separations d. The solid
curve represents the measured molasses decay rate; it is not a
fit to the temperature data, but its scale was chosen to em-
phasize its proportionality to the temperature data. The
dashed line shows the temperature expected on the basis of Eq.
(1).

the p«di«ed yl2, and is always below the cooling limit
except when i 6 i

& y/2. Also shown in Fig. 2 is the mo-
lasses decay rate. This was obtained from an exponen-
tial fit to the decay of the molasses fluorescence when the
loading was shut ofl', but the molasses lasers were kept
on. The following changes had no significant (10 pK)
efl'ect on the measured temperature at 6=—20 MHz:
reduction of the intensity of the molasses beams by a
factor of 3, or of the probe by a factor of 100; reduction
of molasses density by a factor of 6; variation of the time
between loading shutoff and molasses shutoff from 20 to
50 ms. Considering the scatter between various mea-
surements, uncertainties in the geometry, and the calcu-
lation, we determine the minimum temperature, with 1-
standard-deviation uncertainty, to be 43+ 20 pK.
In the second or "fountain" method the probe beam is

placed a center-to-center height h above the molasses.
Atoms with a given upward velocity, released from the
molasses, rise only to a given height in the gravitational
potential. The number of atoms reaching the probe, as a
function of h, is a measure of their temperature. Figure
3 shows the dependence of the time-integrated TOF sig-
nal on h, for 6—=—20 MHz. Error bars reflect statisti-
cal scatter and uncertainties due to baseline subtraction.
T=60 pK best fits the data with 12=1.4 for 4 degrees
of freedom; Z for 240 pK is 27.5. The final result, with
systematic and random errors is 60+ 25 pK.
In the third, or shower, method the probe is placed un-

der the molasses and the time integral of the fluorescence
is measured for various horizontal displacements of the
probe. The horizontal distance traveled by the atoms
while falling to the probe depends on their horizontal ve-
locity. Thus, lower temperature will result in an in-
tegrated probe signal which decreases more rapidly as
the probe is translated off center. For a vertical drop of
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The result by the Phillips group:

Lett et al. PRL 61 169 (1988)
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Comment by Steve Chu:

periments that slowed atomic beams with laser light,4

but sodium atoms had to be slowed to velocities on the
order of 200–300 cm/sec (essentially stopped!) before an
atom trap could be loaded. Two groups achieved this
milestone in late 1984: a group at the National Bureau of
Standards in Gaithersburg, Maryland, led by Bill Phillips
using a tapered magnetic field (Prodan et al., 1985) and
another NBS group in Boulder, Colorado, led by Jan
Hall (Ertmer et al., 1985). We decided to copy the tech-
nique of Ertmer et al. (1985), and use an electro-optic
generator to produce a frequency-shifted sideband. The
frequency-shifted light is directed against the atoms
coming off the sodium surface, and as the atoms slow,
the frequency is changed in order to keep the light in
resonance with the Doppler shifting atoms.

Leo was better at electronics than I and assumed the
responsibility of the radio-frequency part of the project,
while I set out to build a wideband, transmission line
electro-optic modulator. One of the advantages of work-
ing at Bell Laboratories was that one could often find a
needed expert consultant within the Labs. Much of the
electro-optic modulator development was pioneered at
the Labs in Holmdel in the 1960s and we were still the
leaders of the field in 1983. I learned about making
electro-optic modulators by reading the book written by
a colleague, Ivan Kaminow (1974). I enlisted Larry Buhl
to cut and polish the LiTaO3 crystal for the modulator.
Rod Alferness taught me about microwave impedance
matching and provided the SMA ‘‘launchers’’ needed to
match Leo’s electronics with my parallel-plate transmis-
sion line modulator. One month after we decided to pre-
cool the atoms with a frequency-swept laser beam, we
had a functioning, wideband gigahertz electro-optic
modulator and driver and could begin to precool the
atoms from our puffing source.

In the early spring of 1984, Leo and I started with a
completely bare optical table, no vacuum chamber, and
no modulator. Later that spring, John Bjorkholm, who
had previously demonstrated the dipole force by focus-
ing an atomic beam, joined our experiment. In the early
summer, I recruited Alex Cable, a fresh graduate from
Rutgers. Officially he was hired as my ‘‘technician’’: un-
officially, he became a super-graduate student. In less
than one year, we submitted our optical molasses paper
(Chu, Holberg, et al. 1985).5 The two papers reporting
the stopping of atomic beams (Ertmer et al., 1985;
Prodan et al., 1985) were published one month earlier.

The apparatus we built to demonstrate optical molas-
ses is shown in Figs. 3(a) and 3(b). We had an ultrahigh-
vacuum chamber, but did not want to be hampered by

long bake-out times to achieve good vacuum. Instead,
we built a cryo-shield painted with Aquadag, a graphite-
based substance. When cooled to liquid-nitrogen tem-
peratures, the shield became a very effective sorption
pump: we could open the vacuum chamber one day and
be running by the next day. Fast turnaround time has
always been important to me. Mistakes are unavoidable,
so I always wanted an apparatus that would allow mis-
takes to be corrected as rapidly as possible.

The first signals of atoms confined in optical molasses
showed confinement times of a few tens of milliseconds,
but shortly afterwards we improved the storage time by
over an order of magnitude. Surprisingly, it took us a
week after achieving molasses to look inside the vacuum
can with our eyes instead of with a photomultiplier tube.
When we finally did, we were rewarded with the sight
shown in Fig. 4.

In this early work, the laser beams were aligned to be
as closely counter-propagating as we could manage. A
year later, we stumbled onto a misalignment configura-
tion that produced another order of magnitude increase
in the storage time. This so-called ‘‘super-molasses’’
alignment of our beams also created a compression of
the atoms into a region of space on the order of 2 mm
diameter from an initial spread of 1 cm. We were never
able to understand this phenomenon and, after a num-
ber of attempts, published a brief summary of these re-
sults in conference proceedings (Chu, Prentiss, et al.,
1988; Shevy, Weiss, and Chu, 1989).

In our first molasses work, we realized that the tradi-
tional method of measuring the temperature by measur-
ing the Doppler broadening of an atomic resonance line
would not work for the low temperatures we hoped to
achieve. Instead we introduced a time-of-flight tech-
nique to directly measure the velocity distribution of the
atoms. After allowing the atoms in the molasses to come
to equilibrium, we turned off the light for a variable
amount of time. The fast atoms escaped ballistically dur-
ing this time while the slower atoms were recaptured by
the molasses. This method allowed us to directly mea-
sure the velocity distribution. Our first measurements
showed a temperature of 185 mK, slightly lower than the
minimum temperature allowed by the theory of Doppler
cooling. We then made the cardinal mistake of experi-
mental physics: instead of listening to Nature, we were
overly influenced by theoretical expectations. By includ-
ing a fudge factor to account for the way atoms filled the
molasses region, we were able to bring our measurement
into accord with our expectations.

ON TO OPTICAL TRAPPING

Once we demonstrated optical molasses, we began to
explore ways to achieve our original goal of optically
trapping atoms. As a point of reference, Bill Phillips and
his collaborators had reported the magnetic trapping of
sodium atoms (Migdal et al., 1985) two weeks before our
optical molasses paper came out. Although the 1/e stor-
age of the molasses confinement in our first experiment

4For a comprehensive discussion of the work up to 1985, see
Phillips et al. (1985).

5The components of the experiment were assembled from
parts of previous experiments: the cw dye laser needed for the
optical molasses and the pulsed YAG laser were previously
used in a dye laser oscillator/amplifier system in a positronium
spectroscopy experiment. A surplus vacuum chamber in a de-
velopment section of Bell Laboratories became our molasses
chamber.
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piete extinction 40 ps) thereby releasing the atoms to
travel ballistically in the dark.
The atomic temperature determines the distribution,

in space and time, of the released atoms. Each of our
four methods measures some feature of this distribution.
The temperature is found by comparison of these mea-
surements with calculations obtained by numerical in-
tegration over the assumed 3D Maxwell-Boltzmann ve-
locity distribution of the atoms and the initial, measured
spatial distribution of the atoms in the molasses. The
calculations include such features as the considerable
efl'ect of gravity, the intensity distribution of the laser
beams, and the geometry of the detection process.
The first method is a time-of-flight (TOF) determina-

tion of the temperature. A pair of counterpropagating
beams, derived from the molasses laser (including the
sidebands), form a probe region under the molasses. '

We vary the center-to-center separation d from 1.0 to
1.9 cm. The probe cross section is either a 4-mm-diam
circle or a 4-mm-widex 1-mm-high rectangle, with a
power of 3 mW per beam. An 8.5-mm length of probe,
directly below the molasses, is imaged onto a photomulti-
plier, and the time dependence of the probe-induced
fluorescence is recorded, after the molasses beams are
shut off. Numerical calculations of this TOF signal
show that the time of the peak signal is mainly sensitive
to d and to the temperature, but is relatively insensitive
to other details.
Figure 1 shows a typical TOF signal, averaged for 40

repetitions, at d= 1.1 cm, along with calculated signals.
The data agree with the calculation for 40 pK and are
clearly inconsistent with the "cooling limit" of 240 pK.
For these data 4= —20 MHz; note that at this detuning
Eq. (1) gives 510 pK. Figure 2 shows the variation in
the measured temperature (determined from the time of
the peak of the TOF signal) as a function of 5 for vari-
ous d's. The data are radically different from Eq. (1):
The temperature is minimized for i 6 i much larger than
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FIG. 1. TOF data and calculations. The shaded area indi-
cates the range of error in the 40-p K calculation from
geometric uncertainties. The width of the data is slightly
larger than the calculation, presumably because of shot-to-shot
instabilities.
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FIG. 2. T vs h, by TOF for various separations d. The solid
curve represents the measured molasses decay rate; it is not a
fit to the temperature data, but its scale was chosen to em-
phasize its proportionality to the temperature data. The
dashed line shows the temperature expected on the basis of Eq.
(1).

the p«di«ed yl2, and is always below the cooling limit
except when i 6 i

& y/2. Also shown in Fig. 2 is the mo-
lasses decay rate. This was obtained from an exponen-
tial fit to the decay of the molasses fluorescence when the
loading was shut ofl', but the molasses lasers were kept
on. The following changes had no significant (10 pK)
efl'ect on the measured temperature at 6=—20 MHz:
reduction of the intensity of the molasses beams by a
factor of 3, or of the probe by a factor of 100; reduction
of molasses density by a factor of 6; variation of the time
between loading shutoff and molasses shutoff from 20 to
50 ms. Considering the scatter between various mea-
surements, uncertainties in the geometry, and the calcu-
lation, we determine the minimum temperature, with 1-
standard-deviation uncertainty, to be 43+ 20 pK.
In the second or "fountain" method the probe beam is

placed a center-to-center height h above the molasses.
Atoms with a given upward velocity, released from the
molasses, rise only to a given height in the gravitational
potential. The number of atoms reaching the probe, as a
function of h, is a measure of their temperature. Figure
3 shows the dependence of the time-integrated TOF sig-
nal on h, for 6—=—20 MHz. Error bars reflect statisti-
cal scatter and uncertainties due to baseline subtraction.
T=60 pK best fits the data with 12=1.4 for 4 degrees
of freedom; Z for 240 pK is 27.5. The final result, with
systematic and random errors is 60+ 25 pK.
In the third, or shower, method the probe is placed un-

der the molasses and the time integral of the fluorescence
is measured for various horizontal displacements of the
probe. The horizontal distance traveled by the atoms
while falling to the probe depends on their horizontal ve-
locity. Thus, lower temperature will result in an in-
tegrated probe signal which decreases more rapidly as
the probe is translated off center. For a vertical drop of
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Comment by Steve Chu:

periments that slowed atomic beams with laser light,4

but sodium atoms had to be slowed to velocities on the
order of 200–300 cm/sec (essentially stopped!) before an
atom trap could be loaded. Two groups achieved this
milestone in late 1984: a group at the National Bureau of
Standards in Gaithersburg, Maryland, led by Bill Phillips
using a tapered magnetic field (Prodan et al., 1985) and
another NBS group in Boulder, Colorado, led by Jan
Hall (Ertmer et al., 1985). We decided to copy the tech-
nique of Ertmer et al. (1985), and use an electro-optic
generator to produce a frequency-shifted sideband. The
frequency-shifted light is directed against the atoms
coming off the sodium surface, and as the atoms slow,
the frequency is changed in order to keep the light in
resonance with the Doppler shifting atoms.

Leo was better at electronics than I and assumed the
responsibility of the radio-frequency part of the project,
while I set out to build a wideband, transmission line
electro-optic modulator. One of the advantages of work-
ing at Bell Laboratories was that one could often find a
needed expert consultant within the Labs. Much of the
electro-optic modulator development was pioneered at
the Labs in Holmdel in the 1960s and we were still the
leaders of the field in 1983. I learned about making
electro-optic modulators by reading the book written by
a colleague, Ivan Kaminow (1974). I enlisted Larry Buhl
to cut and polish the LiTaO3 crystal for the modulator.
Rod Alferness taught me about microwave impedance
matching and provided the SMA ‘‘launchers’’ needed to
match Leo’s electronics with my parallel-plate transmis-
sion line modulator. One month after we decided to pre-
cool the atoms with a frequency-swept laser beam, we
had a functioning, wideband gigahertz electro-optic
modulator and driver and could begin to precool the
atoms from our puffing source.

In the early spring of 1984, Leo and I started with a
completely bare optical table, no vacuum chamber, and
no modulator. Later that spring, John Bjorkholm, who
had previously demonstrated the dipole force by focus-
ing an atomic beam, joined our experiment. In the early
summer, I recruited Alex Cable, a fresh graduate from
Rutgers. Officially he was hired as my ‘‘technician’’: un-
officially, he became a super-graduate student. In less
than one year, we submitted our optical molasses paper
(Chu, Holberg, et al. 1985).5 The two papers reporting
the stopping of atomic beams (Ertmer et al., 1985;
Prodan et al., 1985) were published one month earlier.

The apparatus we built to demonstrate optical molas-
ses is shown in Figs. 3(a) and 3(b). We had an ultrahigh-
vacuum chamber, but did not want to be hampered by

long bake-out times to achieve good vacuum. Instead,
we built a cryo-shield painted with Aquadag, a graphite-
based substance. When cooled to liquid-nitrogen tem-
peratures, the shield became a very effective sorption
pump: we could open the vacuum chamber one day and
be running by the next day. Fast turnaround time has
always been important to me. Mistakes are unavoidable,
so I always wanted an apparatus that would allow mis-
takes to be corrected as rapidly as possible.

The first signals of atoms confined in optical molasses
showed confinement times of a few tens of milliseconds,
but shortly afterwards we improved the storage time by
over an order of magnitude. Surprisingly, it took us a
week after achieving molasses to look inside the vacuum
can with our eyes instead of with a photomultiplier tube.
When we finally did, we were rewarded with the sight
shown in Fig. 4.

In this early work, the laser beams were aligned to be
as closely counter-propagating as we could manage. A
year later, we stumbled onto a misalignment configura-
tion that produced another order of magnitude increase
in the storage time. This so-called ‘‘super-molasses’’
alignment of our beams also created a compression of
the atoms into a region of space on the order of 2 mm
diameter from an initial spread of 1 cm. We were never
able to understand this phenomenon and, after a num-
ber of attempts, published a brief summary of these re-
sults in conference proceedings (Chu, Prentiss, et al.,
1988; Shevy, Weiss, and Chu, 1989).

In our first molasses work, we realized that the tradi-
tional method of measuring the temperature by measur-
ing the Doppler broadening of an atomic resonance line
would not work for the low temperatures we hoped to
achieve. Instead we introduced a time-of-flight tech-
nique to directly measure the velocity distribution of the
atoms. After allowing the atoms in the molasses to come
to equilibrium, we turned off the light for a variable
amount of time. The fast atoms escaped ballistically dur-
ing this time while the slower atoms were recaptured by
the molasses. This method allowed us to directly mea-
sure the velocity distribution. Our first measurements
showed a temperature of 185 mK, slightly lower than the
minimum temperature allowed by the theory of Doppler
cooling. We then made the cardinal mistake of experi-
mental physics: instead of listening to Nature, we were
overly influenced by theoretical expectations. By includ-
ing a fudge factor to account for the way atoms filled the
molasses region, we were able to bring our measurement
into accord with our expectations.

ON TO OPTICAL TRAPPING

Once we demonstrated optical molasses, we began to
explore ways to achieve our original goal of optically
trapping atoms. As a point of reference, Bill Phillips and
his collaborators had reported the magnetic trapping of
sodium atoms (Migdal et al., 1985) two weeks before our
optical molasses paper came out. Although the 1/e stor-
age of the molasses confinement in our first experiment

4For a comprehensive discussion of the work up to 1985, see
Phillips et al. (1985).

5The components of the experiment were assembled from
parts of previous experiments: the cw dye laser needed for the
optical molasses and the pulsed YAG laser were previously
used in a dye laser oscillator/amplifier system in a positronium
spectroscopy experiment. A surplus vacuum chamber in a de-
velopment section of Bell Laboratories became our molasses
chamber.
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piete extinction 40 ps) thereby releasing the atoms to
travel ballistically in the dark.
The atomic temperature determines the distribution,

in space and time, of the released atoms. Each of our
four methods measures some feature of this distribution.
The temperature is found by comparison of these mea-
surements with calculations obtained by numerical in-
tegration over the assumed 3D Maxwell-Boltzmann ve-
locity distribution of the atoms and the initial, measured
spatial distribution of the atoms in the molasses. The
calculations include such features as the considerable
efl'ect of gravity, the intensity distribution of the laser
beams, and the geometry of the detection process.
The first method is a time-of-flight (TOF) determina-

tion of the temperature. A pair of counterpropagating
beams, derived from the molasses laser (including the
sidebands), form a probe region under the molasses. '

We vary the center-to-center separation d from 1.0 to
1.9 cm. The probe cross section is either a 4-mm-diam
circle or a 4-mm-widex 1-mm-high rectangle, with a
power of 3 mW per beam. An 8.5-mm length of probe,
directly below the molasses, is imaged onto a photomulti-
plier, and the time dependence of the probe-induced
fluorescence is recorded, after the molasses beams are
shut off. Numerical calculations of this TOF signal
show that the time of the peak signal is mainly sensitive
to d and to the temperature, but is relatively insensitive
to other details.
Figure 1 shows a typical TOF signal, averaged for 40

repetitions, at d= 1.1 cm, along with calculated signals.
The data agree with the calculation for 40 pK and are
clearly inconsistent with the "cooling limit" of 240 pK.
For these data 4= —20 MHz; note that at this detuning
Eq. (1) gives 510 pK. Figure 2 shows the variation in
the measured temperature (determined from the time of
the peak of the TOF signal) as a function of 5 for vari-
ous d's. The data are radically different from Eq. (1):
The temperature is minimized for i 6 i much larger than
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FIG. 1. TOF data and calculations. The shaded area indi-
cates the range of error in the 40-p K calculation from
geometric uncertainties. The width of the data is slightly
larger than the calculation, presumably because of shot-to-shot
instabilities.
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FIG. 2. T vs h, by TOF for various separations d. The solid
curve represents the measured molasses decay rate; it is not a
fit to the temperature data, but its scale was chosen to em-
phasize its proportionality to the temperature data. The
dashed line shows the temperature expected on the basis of Eq.
(1).

the p«di«ed yl2, and is always below the cooling limit
except when i 6 i

& y/2. Also shown in Fig. 2 is the mo-
lasses decay rate. This was obtained from an exponen-
tial fit to the decay of the molasses fluorescence when the
loading was shut ofl', but the molasses lasers were kept
on. The following changes had no significant (10 pK)
efl'ect on the measured temperature at 6=—20 MHz:
reduction of the intensity of the molasses beams by a
factor of 3, or of the probe by a factor of 100; reduction
of molasses density by a factor of 6; variation of the time
between loading shutoff and molasses shutoff from 20 to
50 ms. Considering the scatter between various mea-
surements, uncertainties in the geometry, and the calcu-
lation, we determine the minimum temperature, with 1-
standard-deviation uncertainty, to be 43+ 20 pK.
In the second or "fountain" method the probe beam is

placed a center-to-center height h above the molasses.
Atoms with a given upward velocity, released from the
molasses, rise only to a given height in the gravitational
potential. The number of atoms reaching the probe, as a
function of h, is a measure of their temperature. Figure
3 shows the dependence of the time-integrated TOF sig-
nal on h, for 6—=—20 MHz. Error bars reflect statisti-
cal scatter and uncertainties due to baseline subtraction.
T=60 pK best fits the data with 12=1.4 for 4 degrees
of freedom; Z for 240 pK is 27.5. The final result, with
systematic and random errors is 60+ 25 pK.
In the third, or shower, method the probe is placed un-

der the molasses and the time integral of the fluorescence
is measured for various horizontal displacements of the
probe. The horizontal distance traveled by the atoms
while falling to the probe depends on their horizontal ve-
locity. Thus, lower temperature will result in an in-
tegrated probe signal which decreases more rapidly as
the probe is translated off center. For a vertical drop of

170

The result by the Phillips group:

Lett et al. PRL 61 169 (1988)

• We know how to perform qubit operation.
• Atoms are really cold.
• How can we trap them individually ?
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Tweezers and atom sorting

38M. Endres et al., Science 354, 1024 (2016).



Tweezers and atom sorting

39D. Barredo et al. Science 354, 1021 (2016).
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Sub Hz stability on 1000THz transition

A. Young et al. arXiv:2004.06095 (2020)



Tweezer clocks
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Sub Hz stability on 1000THz transition

A. Young et al. arXiv:2004.06095 (2020)

• Large arrays of individually controlled qubits.
• How can we entangle them ?



1. Atomic clocks — Qubits in cold atoms

2. Optical tweezers — Trapped qubits in atoms

3. Rydberg atoms — Large scale entanglement

4. Moving particles — Bosons vs Fermions and the link to chemistry

5. Lattice gauge theories — Working on a really physics hard problem



Rydberg atoms - Fast entanglement of neutral atoms

43

1s
2p 1s

2p

Qubit A Qubit B

ZX ZX

R



Rydberg atoms - Fast entanglement of neutral atoms

44

1s
2p 1s

2p

Qubit A Qubit B

ZX ZX

…

e-

e-
…

Rr r



Rydberg atoms - Fast entanglement of neutral atoms
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Rydberg atoms - Fast entanglement of neutral atoms
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A. Browaeys and T. Lahaye, Nat. Phys. 16, 132 (2020).

P. Schauß et al. Nature 491, 87 (2012).



Rydberg atoms - Fast entanglement of neutral atoms
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A. Browaeys and T. Lahaye, Nat. Phys. 16, 132 (2020).

High fidelity entanglement I. S. Madjarov et al. Nat. Phys. 16, 857 (2020).
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ninj nj =
1
2

+ σz
j

Single qubit control Two qubit interaction

Now: Use full control over the parameters of the Hamiltonian to 
solve specific problems.

Until now: Use the control to implement a universal gate set
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H. Bernien et al. Nature 551, 579 (2017).

Quantum simulators with up to 51 atoms



Rydberg simulators in 2D
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Schrödinger cats with 20 atoms

A. Omran et al. Science 365, 570 (2019).
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L. Henriet et al. Quantum 4, 327 (2020).

H. Pichler et al., ArXiv 1808.10816 (2018).

Possible applications to finance,  network design
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L. Henriet et al. Quantum 4, 327 (2020).

H. Pichler et al., ArXiv 1808.10816 (2018).

Possible applications to finance,  network design

• Possible project for this week



Digital vs analog
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L. Henriet et al. Quantum 4, 327 (2020).



1. Atomic clocks — Qubits in cold atoms

2. Optical tweezers — Trapped qubits in atoms

3. Rydberg atoms — Large scale entanglement

4. Moving particles — Bosons vs Fermions and the link to chemistry

5. Lattice gauge theories — Working on a really physics hard problem







What happens when you cool a gas?
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3kBT
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atoms = wave packets

�dB =
h
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=

s
h2

3mkBT

Thermal de Broglie
wavelength

Average velocity of
thermal atoms:



Evaporative cooling
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How to get colder?

Evaporative Cooling

Hess, PRB 34 3476 (1985)



How do you create a BEC ?
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In the first week of April 1996, there was a workshop
on ‘‘Collective effects in ultracold atomic gases’’ in Les
Houches, France, where most of the leading groups
were represented. It was the first such meeting after the
summer of 1995, and it was not without strong emotions
that I reported our results. Since no other experimental
group had made major progress in BEC over the last
few months, it was our work which provided optimism
for further rapid developments.

E. Interference between two condensates

After we got BEC in the cloverleaf trap, both the ma-
chine and the group were in overdrive. After years of
building and improving, frequent failures and frustra-
tion, it was like a phase transition to a situation where
almost everything worked. Within three months after
getting a condensate in the cloverleaf trap we had writ-
ten three papers on the new trap and the phase transi-
tion (Mewes et al., 1996a), on nondestructive imaging
(Andrews et al., 1996), and on collective excitations
(Mewes et al., 1996b). Klaasjan van Druten left the
group, shortly after Christopher Townsend had joined us
as a postdoc. As the next major goal, we decided to
study the coherence of the condensate. With our optical
plug, we had already developed the tool to split a con-

densate into two halves and hoped to observe their in-
terference, which would be a clear signature of the long-
range spatial coherence.

Around the same time, the idea came up to extract
atoms from the condensate using rf induced spin flips—
the rf output coupler. Some theorists regarded an output
coupler as an open question in the context of the atom
laser. I suggested to my group that we could simply pulse
on the radio-frequency source that was already used
during evaporation, and couple atoms out of the con-
densate by flipping their spin to a nontrapped state (Fig.
14). The experiment worked the first time we tried it
(but the quantitative work took awhile; Mewes et al.,
1997). I have never regarded the output coupler as one
of our major accomplishments because it was so simple,
but it had impact on the community and nobody has
ever since regarded outcoupling as a problem!

In July 1996, we had the first results on the rf output
coupler, and also saw the first fringes when two conden-
sates were separated with a sheet of green light and
overlapped in ballistic expansion. I was in Australia for
vacation and for the IQEC conference in Sydney. By
e-mail and telephone I discussed with my group the new
results. The fringes were most pronounced when the
condensates were accelerated into each other by remov-
ing the light sheet shortly before switching off the mag-

FIG. 11. Comparison of a laser cooling and BEC experiment. The first photograph shows the author in 1993 working on the Dark
SPOT trap. In the following years, this laser cooling experiment was upgraded to a BEC experiment. The second photograph
shows the same apparatus in 2001 after many additional components have been added [Color].

1142 Wolfgang Ketterle: When atoms behave as waves

Rev. Mod. Phys., Vol. 74, No. 4, October 2002

before BEC
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61

with BEC

netic trap. We concluded that some of the fringes might
be related to sound and other collective effects that oc-
cur when two condensates at fairly high density ‘‘touch’’
each other. I presented those results at the Sydney meet-
ing only to illustrate we were able to do experiments
with two condensates, but now we had to sort out what
was happening.

It took us four more months until we observed clean
interference between two condensates. When two con-
densates that were initially separated by a distance d
interfere and the interference pattern is recorded after a
time t of ballistic expansion, then the fringe spacing is
the de Broglie wavelength h/mv associated with the
relative velocity v!d/t . For our geometry with two con-
densates about 100 !m in length, we estimated that we
would need at least 60 ms of time of flight to observe
fringes with a 10-!m period, close to the resolution of
our imaging system. Unfortunately, due to gravity, the
atoms dropped out of the field of view of our windows
after 40 ms. So we tried to gain a longer expansion time
in a fountain geometry where we magnetically launched
the atoms and observed them when they fell back
through the observation region after more than 100 ms
(Townsend et al., 1997), but the clouds were distorted.
We also tried to compensate gravity by a vertical
magnetic-field gradient. Some time later I learned about

new calculations by the theory group at the Max Planck
Institute in Garching, showing that the effective separa-
tion of two elongated condensates is smaller than their
center-of-mass separation (Röhrl et al., 1997). This
meant that we could observe interference fringes after
only 40 ms, just before the atoms fell out of the obser-
vation region. We immediately had a discussion in the
group and decided to stop working on fountains and
‘‘antigravity’’ and simply let the atoms fall by 8 mm dur-
ing 40 ms.

We made some ambiguous observations where we saw
low-contrast fringes together with some optical interfer-
ence patterns of the probe light, but the breakthrough
came on November 21, 1996, when we observed striking
interference patterns (Fig. 15). I still remember the situ-
ation late that night when we wondered how could we
prove beyond all doubt that these were matter-wave in-
terference patterns and not some form of self-diffraction
of a condensate confined by a light sheet and then re-
leased. We came up with the idea of eliminating one of
the condensates in the last moment by focusing resonant
yellow light on it. Whimsically, this laser beam was
dubbed the ‘‘flame thrower.’’ If the fringes were self-
diffraction due to the sharp edge in the confinement,
they would remain; if they were true interference they
would vanish. This was like a double slit experiment in

FIG. 11. (Continued.)

1143Wolfgang Ketterle: When atoms behave as waves

Rev. Mod. Phys., Vol. 74, No. 4, October 2002
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How do you see a BEC ?
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Initial trap (Real space):

conferences, and the data were sufficient to convince the
most skeptical of them that we had truly observed BEC.
This consensus probably facilitated the rapid refereeing
and publication of our results.

In the original TOP-trap apparatus we were able to
obtain so-called pure condensates of a few thousand at-
oms. By pure condensates we meant that nearly all the
atoms were in the condensed fraction of the sample.

FIG. 7. Three density distributions of the expanded clouds of rubidium atoms at three different temperatures. The appearance of
the condensate is apparent as the narrow feature in the middle image. On the far right, nearly all the atoms in the sample are in
the condensate. The original experimental data were two-dimensional black and white shadow images, but these images have been
converted to three dimensions and given false color density contours [Color].

FIG. 8. Looking down on the three images of Figure 7 (Anderson et al., 1995). The condensate in B and C is clearly elliptical in
shape [Color].

884 E. A. Cornell and C. E. Wieman: BEC in a dilute gas

Rev. Mod. Phys., Vol. 74, No. 3, July 2002

Momentum distribution:

Time of flight
cut the trap and

 let it expand freely
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 single atom — qubit — ℓ = 1/2

|ψ⟩ = α−1/2 | − 1/2⟩ + α1/2 |1/2⟩

[L̂x, L̂y] = iL̂z  with integer L̂z |n⟩ = n |n⟩ |n | ≤ ℓ
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 single atom — qubit — ℓ = 1/2

|ψ⟩ = α−1/2 | − 1/2⟩ + α1/2 |1/2⟩

|ψ⟩ = α−ℓ | − ℓ⟩ + ⋯ + αℓ |ℓ⟩

[L̂x, L̂y] = iL̂z  with integer L̂z |n⟩ = n |n⟩ |n | ≤ ℓ

|ℓ⟩

| − ℓ⟩

N indistinguishable atoms — qudit — ℓ = N/2



Squeezing with cold atoms
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• Possible project for this week

H. Strobel et al. Science, 345, 424 (2014)



On fermion vs bosons
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A. G. Truscott et al. Science 291, 2570 (2001).
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Second quantization
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Many particles: full wave-function has to be properly symmetrized

Bosons Fermions

Second quantization: work with creation operators at the given states

orthonormal base
lowering operator



Number states of bosons and fermions
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̂a† |0⟩ = |1⟩

̂a† |n⟩ = n + 1 |n + 1⟩

̂a† |0⟩ = |1⟩

̂a† |1⟩ = 0̂a† |1⟩ = 2 |2⟩

Bosons Fermions

…

Hilbert space infinite on each site Only two states (like for qubits)

Single orbit



Number states of bosons and fermions
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̂a†
j |n0, ⋯, nj, ⋯⟩ = nj + 1 |n0, ⋯, nj + 1,⋯⟩

Bosons Fermions

Sign problem

…

Site 1 Site 2 Site i

̂a†
j |n0, ⋯, nj, ⋯⟩ = (−1)∑i<j ni 1 − nj |n0, ⋯, nj + 1,⋯⟩



Number states of bosons and fermions
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̂a†
j |n0, ⋯, nj, ⋯⟩ = nj + 1 |n0, ⋯, nj + 1,⋯⟩

Bosons Fermions

Sign problem

…

Site 1 Site 2 Site i

̂a†
j |n0, ⋯, nj, ⋯⟩ = (−1)∑i<j ni 1 − nj |n0, ⋯, nj + 1,⋯⟩

• Quite complicated even on quantum computers
• Solve this in natural implementations ?



One fermion at a time

74

L. Bayha et al., arXiv 2004.14761 (2020).



Fermions in different tweezers

75S. Murmann. Physical Review Letters, 114, 080402 (2015)



Now let’s go real big - the optical lattice
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Optical lattice with potential:

Lattice spacing:



Higher dimensional lattice
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Cross the polarization !



Higher dimensional lattice
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that due to the interference of the two laser beams, V0 is
four times larger than Vtrap if the laser power and beam
parameters of the two interfering lasers are equal.

Periodic potentials in two dimensions can be formed
by overlapping two optical standing waves along differ-
ent, usually orthogonal, directions. For orthogonal po-
larization vectors of the two laser fields, no interference
terms appear. The resulting optical potential in the cen-
ter of the trap is then a simple sum of a purely sinusoidal
potential in both directions.

In such a two-dimensional optical lattice potential, at-
oms are confined to arrays of tightly confining one-
dimensional tubes !see Fig. 4"a#$. For typical experimen-
tal parameters, the harmonic trapping frequencies along
the tube are very weak "on the order of 10–200 Hz#,
while in the radial direction the trapping frequencies can
become as high as up to 100 kHz. For sufficiently deep
lattice depths, atoms can move only axially along the
tube. In this manner, it is possible to realize quantum
wires with neutral atoms, which allows one to study
strongly correlated gases in one dimension, as discussed
in Sec. V. Arrays of such quantum wires have been real-
ized "Greiner et al., 2001; Moritz et al., 2003; Kinoshita et
al., 2004; Paredes et al., 2004; Tolra et al., 2004#.

For the creation of a three-dimensional lattice poten-
tial, three orthogonal optical standing waves have to be
overlapped. The simplest case of independent standing
waves, with no cross interference between laser beams
of different standing waves, can be realized by choosing
orthogonal polarization vectors and by using slightly dif-
ferent wavelengths for the three standing waves. The

resulting optical potential is then given by the sum of
three standing waves. In the center of the trap, for dis-
tances much smaller than the beam waist, the trapping
potential can be approximated as the sum of a homoge-
neous periodic lattice potential

Vp"x,y,z# = V0"sin2 kx + sin2 ky + sin2 kz# "36#

and an additional external harmonic confinement due to
the Gaussian laser beam profiles. In addition to this, a
confinement due to the magnetic trapping is often used.

For deep optical lattice potentials, the confinement on
a single lattice site is approximately harmonic. Atoms
are then tightly confined at a single lattice site, with trap-
ping frequencies !0 of up to 100 kHz. The energy "!0
=2Er"V0 /Er#1/2 of local oscillations in the well is on the
order of several recoil energies Er="2k2 /2m, which is a
natural measure of energy scales in optical lattice poten-
tials. Typical values of Er are in the range of several
kilohertz for 87Rb.

Spin-dependent optical lattice potentials. For large de-
tunings of the laser light forming the optical lattices
compared to the fine-structure splitting of a typical
alkali-metal atom, the resulting optical lattice potentials
are almost the same for all magnetic sublevels in the
ground-state manifold of the atom. However, for more
near-resonant light fields, situations can be created in
which different magnetic sublevels can be exposed to
vastly different optical potentials "Jessen and Deutsch,
1996#. Such spin-dependent lattice potentials can, e.g.,
be created in a standing wave configuration formed by
two counterpropagating laser beams with linear polar-
ization vectors enclosing an angle # "Jessen and Deutsch,
1996; Brennen et al., 1999; Jaksch et al., 1999; Mandel et
al., 2003a#. The resulting standing wave light field can be
decomposed into a superposition of a $+- and a
$−-polarized standing wave laser field, giving rise to lat-
tice potentials V+"x ,##=V0 cos2"kx+# /2# and V−"x ,##
=V0 cos2"kx−# /2#. By changing the polarization angle #,
one can control the relative separation between the two
potentials %x= "# /&#'x /2. When # is increased, both po-
tentials shift in opposite directions and overlap again
when #=n&, with n an integer. Such a configuration has
been used to coherently move atoms across lattices and
realize quantum gates between them "Jaksch et al., 1999;
Mandel et al., 2003a, 2003b#. Spin-dependent lattice po-
tentials furthermore offer a convenient way to tune in-
teractions between two atoms in different spin states. By
shifting the spin-dependent lattices relative to each
other, the overlap of the on-site spatial wave function
can be tuned between zero and its maximum value, thus
controlling the interspecies interaction strength within a
restricted range. Recently, Sebby-Strabley et al. "2006#
have also demonstrated a novel spin-dependent lattice
geometry, in which 2D arrays of double-well potentials
could be realized. Such “superlattice” structures allow
for versatile intrawell and interwell manipulation possi-
bilities "Fölling et al., 2007; Lee et al., 2007; Sebby-
Strabley et al., 2007#. A variety of lattice structures can
be obtained by interfering laser beams under different

(a)

(b)

FIG. 4. "Color online# Optical lattices. "a# Two- and "b# three-
dimensional optical lattice potentials formed by superimposing
two or three orthogonal standing waves. For a two-
dimensional optical lattice, the atoms are confined to an array
of tightly confining one-dimensional potential tubes, whereas
in the three-dimensional case the optical lattice can be ap-
proximated by a three-dimensional simple cubic array of
tightly confining harmonic-oscillator potentials at each lattice
site.

896 Bloch, Dalibard, and Zwerger: Many-body physics with ultracold gases

Rev. Mod. Phys., Vol. 80, No. 3, July–September 2008

Zwerger et al. RMP





Bose-Hubbard Model
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Superfluid 
• Large number fluctuations 
• Coherent state on-site

Mott insulator 
• No number fluctuations 
• Fock state on-site

tunneling J interaction U
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weak lattice deep lattice

Greiner et al., Nature 415 39 (2002)
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per lattice site, exhibit a corresponding variance in the particle
number s2

i ~!nni . When the interactions between the particles relative
to their kinetic energy are increased, the system undergoes a quantum

phase transition to a Mott insulating state4–6. For homogeneous con-
ditions and a two-dimensional simple square lattice, this transition is
expected to occur at U=Jð Þc^16:4 (see ref. 23), where small shifts of
this critical value have been reported when the system is additionally
exposed to an underlying harmonic trapping potential24. In our case,
such an additional harmonic confinement was caused by the
Gaussian beam profile of our lattice beams (1/e2 waist of 75 mm)
and resulted in an in-plane harmonic confinement with trapping
frequencies vx/(2p) 5 72(4) Hz and vy/(2p) 5 83(4) Hz for lattice
depths of Vx,y 5 23(2)Er. For U=J ? U=Jð Þc the Mott insulator
can be described by neglecting the tunnelling energy of the system
in the so called zero-tunnelling approximation (atomic limit). The
in-trap density distribution then exhibits a pronounced shell struc-
ture of incompressible regions where the density is pinned to integer
values and increases in a step-like manner from the outer wings to the
inner core5,16,25,26. At zero temperature, the particle number variance
at a lattice site is then expected to vanish (s2

i ~0), resulting in perfect
Fock states. For low, but still finite temperatures kBT = U , thermal
fluctuations can be induced. These fluctuations limit the quality of
the number squeezing and eventually lead to a complete melting of
the characteristic shell structure of a Mott insulator when the tem-
perature is increased above the melting temperature Tm^0:2U=kB

(see refs 20 and 21).
We monitored the dramatic differences in the density profiles and

the on-site number fluctuations by imaging the in-trap atom distri-
butions of a BEC and a Mott insulator in the zero-tunnelling limit for
different atom numbers and temperatures (see top row of Fig. 2). For
the Mott insulators, the lattices along the x and y directions were
increased in S-shaped ramps within 75 ms up to values of
Vx,y 5 23(2)Er. To freeze out the atom distribution of a BEC, we
ramped up the lattices within 0.1 ms. Using the point spread function
of our optical imaging system we were able to reconstruct the atom
number distribution on the lattice with single-site and single-atom
resolution via an image processing algorithm (see Methods). It works
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Figure 2 | High-resolution fluorescence images of a BEC and Mott
insulators. The top row shows experimentally obtained raw images of a BEC
(a) and Mott insulators for increasing particle numbers (b–g) in the zero-
tunnelling limit. The middle row shows numerically reconstructed atom
distribution on the lattice. The images were convoluted with the point
spread function (* indicates the convolution operator) of our imaging

system for comparison with the original images. The bottom row shows the
reconstructed atom number distribution. Each circle indicates a single atom;
the points mark the lattice sites. The BEC and Mott insulators were prepared
with the same in-plane harmonic confinement (see Supplementary
Information for the Bose–Hubbard model parameters of our system).
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Figure 1 | Experimental set-up. Two-dimensional bosonic quantum gases are
prepared in a single two-dimensional plane of an optical standing wave along
the z direction, which is created by retroreflecting a laser beam (l 5 1,064 nm)
on the coated vacuum window. Additional lattice beams along the x and y
directions are used to bring the system into the strongly correlated regime of a
Mott insulator. The atoms are detected using fluorescence imaging via a high-
resolution microscope objective. Fluorescence of the atoms was induced by
illuminating the quantum gas with an optical molasses that simultaneously
laser-cools the atoms. The inset shows a section from a fluorescence picture of
a dilute thermal cloud (points mark the lattice sites).
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was used to project a square lattice potential
onto the pancake cloud with a periodicity of a =
680 nm, as described in (4). The lattice depth
was ramped exponentially with a time constant
of 81 ms up to a maximum depth of 16Er, where
Er is the recoil energy of the effective lattice
wavelength given by h2/8ma2 (where m is the
mass of 87Rb and h is Planck’s constant). In a
homogeneous system in two dimensions, the
transition to a Mott insulator with one atom per
site occurs at a ratio of interaction energy to tun-
neling rate of U/J = 16.7 (17–19), corresponding
to a lattice depth of 12.2Er. During this ramp,
the initial transverse confinement of 9.5 Hz was
increased such that the cloud size remained ap-
proximately constant. After preparing the many-
body state, we imaged the atoms by increasing
the lattice depth by a factor of several hundred,
and then illuminated the atoms with laser cool-
ing light that served to localize the atoms while
fluorescence photons were collected by high-
resolution optics. As a result of the imaging pro-
cess, the many-body wave function was projected
onto number states on each lattice site. In addi-
tion, light-assisted collisions immediately ejected
atoms in pairs from each lattice site, leaving be-
hind an atom on a site only if its initial occupation
was odd (20). The remaining atoms scattered
several thousand photons during the exposure
time and could be detected with high fidelity. By
preparing the sample repeatedly under the same
conditions, we deduced the probability podd of
having an odd number of atoms on a site before
the measurement.

For a coherent state on a lattice site with
mean atom number l, podd is given by ½[1 –
exp(−2l)] < ½. In a Mott-insulating region in
the zero temperature and zero tunneling limit,
podd = 1 for shells with an odd atom number per
site, and podd = 0 for shells with an even atom
number per site. Figure 1, A to D, shows flu-
orescence images in a region of the cloud as the
final depth of the lattice is increased. The initial
superfluid density was chosen to obtain an in-
sulator with two shells on the Mott side of the
transition; the region shown is in the outer shell
containing one atom per site. For high filling
fractions, the lattice sites in the images were
barely resolved, but the known geometry of the
lattice and imaging system point-spread function
obtained from images at sparser fillings allowed
reliable extraction of site occupations (16).

We used 24 images at each final lattice depth
to determine podd for each site. The transverse
confining potential varied slowly relative to the
lattice spacing, and the system was, to a good
approximation, locally homogeneous. We made
use of this to improve the error in our determi-
nation of podd by averaging over a group of lattice
sites—in this case, 51 sites for regions in the
first shell and 30 sites for regions in the second
shell (Fig. 1E). In the n = 1 shell, we detected an
atom on a site with probability 94.9 T 0.7% at a
lattice depth of 16Er. We measured the lifetime
of the gas in the imaging lattice and determined

that 1.75 T 0.02% of the occupied sites were
detected as unoccupied, as a result of atoms lost
during the imaging exposure time (1 s) because

of background gas collisions. The average oc-
cupation numbers and error bars shown in Fig.
1E include corrections for this effect.

Fig. 1. Single-site imaging of
atom number fluctuations across
the superfluid–Mott insulator
transition. (A to D) Images with-
in each column are taken at
the same final 2D lattice depth
of 6Er (A), 10Er (B), 12Er (C),
and 16Er (D). Top row: In situ
fluorescence images from a re-
gion of 10 × 8 lattice sites
within the n = 1 Mott shell that
forms in a deep lattice. In the
superfluid regime [(A) and (B)],
sites can be occupied with odd
or even atom numbers, which
appear as full or empty sites,
respectively, in the images. In
the Mott insulator, occupancies
other than 1 are highly sup-
pressed (D). Middle row: results
of the atom detection algorithm
(16) for images in the top row.
Solid and open circles indicate
the presence and absence, re-
spectively, of an atom on a site.
Bottom row: Time-of-flight fluo-
rescence images after 8-ms ex-
pansion of the cloud in the 2D
plane as a result of nonadiabat-
ically turning off the lattice and the transverse confinement (averaged over five shots and binned over 5 × 5
lattice sites). (E) Measured value of podd versus the interaction-to-tunneling ratio U/J. Data sets, with 1s error
bars, are shown for regions that form part of the n = 1 (squares) and n = 2 (circles) Mott shells in a deep
lattice. The lines are based on finite-temperature Monte Carlo simulations in a homogeneous system at
constant temperature-to-interaction ratio (T/U) of 0.20 (dotted red line), 0.15 (solid black line), and 0.05
(dashed blue line). The axis on the right is the corresponding odd-even variance given by podd(1 − podd).
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Fig. 2. Single-site imaging of the
shell structure in a Mott insulator.
(A to D) The images show podd on
each site determined by averaging
20 analyzed fluorescence images.
The lattice depth is 22Er and the
transverse confinement is 45 Hz. As
the atom number is increased, the
number of shells in the insulator
increases from one to four. The val-
ue of podd for odd-numbered shells
is close to 1; for even-numbered
shells, it is close to 0. The atom num-
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Single realization

Quantum faster than classical!

Thanks to Philipp Preiss for the slides
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Single realization Average density evolution

Quantum faster than classical!

P. M. Preiss et al., Science 347 1229 (2015)

• Possible project for this week
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What are the electronic properties of 
molecules ?

J. Argüello-Luengo et al. 
Nature 574, 215 (2019).
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Vibrational spectra

Looks an awful lot like bosonic Hubbard 
problem

Electron structure

C. Sparrow, Nature 557, 660 (2018).

Looks an awful lot like fermionic Hubbard 
problem

J. Argüello-Luengo et al. 
Nature 574, 215 (2019).
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Vibrational spectra

Looks an awful lot like bosonic Hubbard 
problem

Electron structure

C. Sparrow, Nature 557, 660 (2018).

Looks an awful lot like fermionic Hubbard 
problem

J. Argüello-Luengo et al. 
Nature 574, 215 (2019).

• Possible projects for this week



1. Atomic clocks — Qubits in cold atoms

2. Optical tweezers — Trapped qubits in atoms

3. Rydberg atoms — Large scale entanglement

4. Moving particles — Bosons vs Fermions and the link to chemistry

5. Lattice gauge theories — Working on a really hard physics problem
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Real-time dynamics of lattice gauge theories with a 
few-qubit quantum computer
Esteban A. Martinez1*, Christine A. Muschik2,3*, Philipp Schindler1, Daniel Nigg1, Alexander Erhard1, Markus Heyl2,4, 
Philipp Hauke2,3, Marcello Dalmonte2,3, Thomas Monz1, Peter Zoller2,3 & Rainer Blatt1,2

Gauge theories are fundamental to our understanding of 
interactions between the elementary constituents of matter as 
mediated by gauge bosons1,2. However, computing the real-time 
dynamics in gauge theories is a notorious challenge for classical 
computational methods. This has recently stimulated theoretical 
effort, using Feynman’s idea of a quantum simulator3,4, to devise 
schemes for simulating such theories on engineered quantum-
mechanical devices, with the difficulty that gauge invariance and 
the associated local conservation laws (Gauss laws) need to be 
implemented5–7. Here we report the experimental demonstration 
of a digital quantum simulation of a lattice gauge theory, by 
realizing (1 + 1)-dimensional quantum electrodynamics (the 
Schwinger model8,9) on a few-qubit trapped-ion quantum computer. 
We are interested in the real-time evolution of the Schwinger 
mechanism10,11, describing the instability of the bare vacuum due 
to quantum fluctuations, which manifests itself in the spontaneous 
creation of electron–positron pairs. To make efficient use of our 
quantum resources, we map the original problem to a spin model 
by eliminating the gauge fields12 in favour of exotic long-range 
interactions, which can be directly and efficiently implemented on 
an ion trap architecture13. We explore the Schwinger mechanism of 
particle–antiparticle generation by monitoring the mass production 
and the vacuum persistence amplitude. Moreover, we track the real-
time evolution of entanglement in the system, which illustrates how 
particle creation and entanglement generation are directly related. 
Our work represents a first step towards quantum simulation of 
high-energy theories using atomic physics experiments—the long-
term intention is to extend this approach to real-time quantum 
simulations of non-Abelian lattice gauge theories.

Small-scale quantum computers exist today in the laboratory as 
programmable quantum devices14. In particular, trapped-ion quan-
tum computers13 provide a platform allowing a few hundred coherent 
quantum gates to act on a few qubits, with a clear roadmap towards 
scaling up these devices4,15. This provides the tools for universal digital 
quantum simulation16, where the time evolution of a quantum system 
is approximated as a stroboscopic sequence of quantum gates17. Here 
we show how this technology can be used to simulate the real-time 
dynamics of a minimal model of a lattice gauge theory, realizing the 
Schwinger model8,9 as a one-dimensional quantum field theory with a 
chain of trapped ions (Fig. 1).

Our few-qubit demonstration is a first step towards simulating 
real-time dynamics in gauge theories: such simulations are funda-
mental for the understanding of many physical phenomena, including 
thermalization after heavy-ion collisions and pair creation studied at 
high- intensity laser facilities6,18. Although existing classical numerical 
methods such as quantum Monte Carlo have been remarkably success-
ful for describing equilibrium phenomena, no systematic techniques 
exist to tackle the dynamical long-time behaviour of all but very small 

systems. In contrast, quantum simulations aim at the long-term goal 
of solving the specific yet fundamental class of problems that currently 
cannot be tackled by these classical techniques. The digital approach 
we employ here is based on the Hamiltonian formulation of gauge  
theories9, and enables direct access to the system wavefunction. As 
we show below, this allows us to investigate entanglement generation  
during particle–antiparticle production, emphasizing a novel perspec-
tive on the dynamics of the Schwinger mechanism2.

Digital quantum simulations described in the present work are con-
ceptually different from, and fundamentally more challenging than, 
previously reported condensed-matter-motivated simulations of spin 
and Hubbard-type models4,19,20. In gauge theories, local symmetries 
lead to the introduction of dynamical gauge fields obeying a Gauss law6. 
Formally, this crucial feature is described by local symmetry generators 
Ĝ{ }i  that commute with the Hamiltonian of the system ˆ ˆ =H G[ , ] 0i  and 

restrict the dynamics to a subspace of physical states | Ψphysical〉  which 
satisfy ˆ Ψ Ψ| 〉= | 〉G qi iphysical physical , where qi are background charges. We 
will be interested in the case qi =  0 for all i (see Methods). Realizing 
such a constrained dynamics on a quantum simulator is demanding 
and has been the focus of theoretical research6,7,11,21–24. Instead, to opti-
mally use the finite resources represented by a few qubits of existing 
quantum hardware, we encode the gauge degrees of freedom in a long-
range interaction between the fermions (electrons and positrons), 
which can be implemented efficiently on our experimental platform. 
This allows us to explore quantum simulation of coherent real-time 

1Institute for Experimental Physics, University of Innsbruck, 6020 Innsbruck, Austria. 2Institute for Quantum Optics and Quantum Information of the Austrian Academy of Sciences, 6020 
Innsbruck, Austria. 3Institute for Theoretical Physics, University of Innsbruck, 6020 Innsbruck, Austria. 4Physics Department, Technische Universität München, 85747 Garching, Germany.
* These authors contributed equally to this work.
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Figure 1 | Quantum simulation of the Schwinger mechanism. a, The 
instability of the vacuum due to quantum fluctuations is one of the most 
fundamental effects in gauge theories. We simulate the coherent real-time 
dynamics of particle–antiparticle creation by realizing the Schwinger 
model (one-dimensional quantum electrodynamics) on a lattice, as 
described in the main text. b, The experimental setup for the simulation 
consists of a linear Paul trap, where a string of 40Ca+ ions is confined.  
The electronic states of each ion, depicted as horizontal lines, encode  
a spin | ↑ 〉  or | ↓ 〉 . These states can be manipulated using laser beams  
(see Methods for details).
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dynamics in gauge theories is a notorious challenge for classical 
computational methods. This has recently stimulated theoretical 
effort, using Feynman’s idea of a quantum simulator3,4, to devise 
schemes for simulating such theories on engineered quantum-
mechanical devices, with the difficulty that gauge invariance and 
the associated local conservation laws (Gauss laws) need to be 
implemented5–7. Here we report the experimental demonstration 
of a digital quantum simulation of a lattice gauge theory, by 
realizing (1 + 1)-dimensional quantum electrodynamics (the 
Schwinger model8,9) on a few-qubit trapped-ion quantum computer. 
We are interested in the real-time evolution of the Schwinger 
mechanism10,11, describing the instability of the bare vacuum due 
to quantum fluctuations, which manifests itself in the spontaneous 
creation of electron–positron pairs. To make efficient use of our 
quantum resources, we map the original problem to a spin model 
by eliminating the gauge fields12 in favour of exotic long-range 
interactions, which can be directly and efficiently implemented on 
an ion trap architecture13. We explore the Schwinger mechanism of 
particle–antiparticle generation by monitoring the mass production 
and the vacuum persistence amplitude. Moreover, we track the real-
time evolution of entanglement in the system, which illustrates how 
particle creation and entanglement generation are directly related. 
Our work represents a first step towards quantum simulation of 
high-energy theories using atomic physics experiments—the long-
term intention is to extend this approach to real-time quantum 
simulations of non-Abelian lattice gauge theories.

Small-scale quantum computers exist today in the laboratory as 
programmable quantum devices14. In particular, trapped-ion quan-
tum computers13 provide a platform allowing a few hundred coherent 
quantum gates to act on a few qubits, with a clear roadmap towards 
scaling up these devices4,15. This provides the tools for universal digital 
quantum simulation16, where the time evolution of a quantum system 
is approximated as a stroboscopic sequence of quantum gates17. Here 
we show how this technology can be used to simulate the real-time 
dynamics of a minimal model of a lattice gauge theory, realizing the 
Schwinger model8,9 as a one-dimensional quantum field theory with a 
chain of trapped ions (Fig. 1).

Our few-qubit demonstration is a first step towards simulating 
real-time dynamics in gauge theories: such simulations are funda-
mental for the understanding of many physical phenomena, including 
thermalization after heavy-ion collisions and pair creation studied at 
high- intensity laser facilities6,18. Although existing classical numerical 
methods such as quantum Monte Carlo have been remarkably success-
ful for describing equilibrium phenomena, no systematic techniques 
exist to tackle the dynamical long-time behaviour of all but very small 

systems. In contrast, quantum simulations aim at the long-term goal 
of solving the specific yet fundamental class of problems that currently 
cannot be tackled by these classical techniques. The digital approach 
we employ here is based on the Hamiltonian formulation of gauge  
theories9, and enables direct access to the system wavefunction. As 
we show below, this allows us to investigate entanglement generation  
during particle–antiparticle production, emphasizing a novel perspec-
tive on the dynamics of the Schwinger mechanism2.

Digital quantum simulations described in the present work are con-
ceptually different from, and fundamentally more challenging than, 
previously reported condensed-matter-motivated simulations of spin 
and Hubbard-type models4,19,20. In gauge theories, local symmetries 
lead to the introduction of dynamical gauge fields obeying a Gauss law6. 
Formally, this crucial feature is described by local symmetry generators 
Ĝ{ }i  that commute with the Hamiltonian of the system ˆ ˆ =H G[ , ] 0i  and 

restrict the dynamics to a subspace of physical states | Ψphysical〉  which 
satisfy ˆ Ψ Ψ| 〉= | 〉G qi iphysical physical , where qi are background charges. We 
will be interested in the case qi =  0 for all i (see Methods). Realizing 
such a constrained dynamics on a quantum simulator is demanding 
and has been the focus of theoretical research6,7,11,21–24. Instead, to opti-
mally use the finite resources represented by a few qubits of existing 
quantum hardware, we encode the gauge degrees of freedom in a long-
range interaction between the fermions (electrons and positrons), 
which can be implemented efficiently on our experimental platform. 
This allows us to explore quantum simulation of coherent real-time 
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Figure 1 | Quantum simulation of the Schwinger mechanism. a, The 
instability of the vacuum due to quantum fluctuations is one of the most 
fundamental effects in gauge theories. We simulate the coherent real-time 
dynamics of particle–antiparticle creation by realizing the Schwinger 
model (one-dimensional quantum electrodynamics) on a lattice, as 
described in the main text. b, The experimental setup for the simulation 
consists of a linear Paul trap, where a string of 40Ca+ ions is confined.  
The electronic states of each ion, depicted as horizontal lines, encode  
a spin | ↑ 〉  or | ↓ 〉 . These states can be manipulated using laser beams  
(see Methods for details).
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mediated by gauge bosons1,2. However, computing the real-time 
dynamics in gauge theories is a notorious challenge for classical 
computational methods. This has recently stimulated theoretical 
effort, using Feynman’s idea of a quantum simulator3,4, to devise 
schemes for simulating such theories on engineered quantum-
mechanical devices, with the difficulty that gauge invariance and 
the associated local conservation laws (Gauss laws) need to be 
implemented5–7. Here we report the experimental demonstration 
of a digital quantum simulation of a lattice gauge theory, by 
realizing (1 + 1)-dimensional quantum electrodynamics (the 
Schwinger model8,9) on a few-qubit trapped-ion quantum computer. 
We are interested in the real-time evolution of the Schwinger 
mechanism10,11, describing the instability of the bare vacuum due 
to quantum fluctuations, which manifests itself in the spontaneous 
creation of electron–positron pairs. To make efficient use of our 
quantum resources, we map the original problem to a spin model 
by eliminating the gauge fields12 in favour of exotic long-range 
interactions, which can be directly and efficiently implemented on 
an ion trap architecture13. We explore the Schwinger mechanism of 
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time evolution of entanglement in the system, which illustrates how 
particle creation and entanglement generation are directly related. 
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quantum gates to act on a few qubits, with a clear roadmap towards 
scaling up these devices4,15. This provides the tools for universal digital 
quantum simulation16, where the time evolution of a quantum system 
is approximated as a stroboscopic sequence of quantum gates17. Here 
we show how this technology can be used to simulate the real-time 
dynamics of a minimal model of a lattice gauge theory, realizing the 
Schwinger model8,9 as a one-dimensional quantum field theory with a 
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cannot be tackled by these classical techniques. The digital approach 
we employ here is based on the Hamiltonian formulation of gauge  
theories9, and enables direct access to the system wavefunction. As 
we show below, this allows us to investigate entanglement generation  
during particle–antiparticle production, emphasizing a novel perspec-
tive on the dynamics of the Schwinger mechanism2.

Digital quantum simulations described in the present work are con-
ceptually different from, and fundamentally more challenging than, 
previously reported condensed-matter-motivated simulations of spin 
and Hubbard-type models4,19,20. In gauge theories, local symmetries 
lead to the introduction of dynamical gauge fields obeying a Gauss law6. 
Formally, this crucial feature is described by local symmetry generators 
Ĝ{ }i  that commute with the Hamiltonian of the system ˆ ˆ =H G[ , ] 0i  and 
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satisfy ˆ Ψ Ψ| 〉= | 〉G qi iphysical physical , where qi are background charges. We 
will be interested in the case qi =  0 for all i (see Methods). Realizing 
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and has been the focus of theoretical research6,7,11,21–24. Instead, to opti-
mally use the finite resources represented by a few qubits of existing 
quantum hardware, we encode the gauge degrees of freedom in a long-
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Figure 1 | Quantum simulation of the Schwinger mechanism. a, The 
instability of the vacuum due to quantum fluctuations is one of the most 
fundamental effects in gauge theories. We simulate the coherent real-time 
dynamics of particle–antiparticle creation by realizing the Schwinger 
model (one-dimensional quantum electrodynamics) on a lattice, as 
described in the main text. b, The experimental setup for the simulation 
consists of a linear Paul trap, where a string of 40Ca+ ions is confined.  
The electronic states of each ion, depicted as horizontal lines, encode  
a spin | ↑ 〉  or | ↓ 〉 . These states can be manipulated using laser beams  
(see Methods for details).

© 2016 Macmillan Publishers Limited. All rights reserved

Digital and analog quantum simulators for lattice gauge theories

| − ⟩
| ↓ ⟩

⟩|
tevo−0.188

Universal QC with atomic mixtures

Squeezing on superconducting circuits


