Quantum circuits in cold atoms

Fred Jendrzejewski Heidelberg University, Germany

fnj@kip.uni-heidelberg.de

Superconducting Qubits

- Superconducting electrical components
- Excitations of superconductor forms qubit

Strengths

- Integrated in electrical circuit
- Control with GHz frequencies
- Great integration into software packages
- Large number of algorithms

Open questions

- Size of system
- Fidelities
- Practical use

Trapped Ions

Lucas group, Oxford

Monroe group, JQI Maryland

- Charged particles
- Electrostatic traps
- Laser and microwave operations

Strengths

- Highest gate fidelities
- Fast experimental timescales

Open questions

- Maximum size 50 qubits so far
- Challenging scalability

Important commercial players

- IonQ (JQI)
- AQT (Innsbruck)
- Honeywell (JILA)

Neutral atoms

Greiner group, Harvard university

- Neutral laser-cooled particles
- Optical potentials
- Single-particle readout and control

Strengths

- Many hundreds of particles
- Enormous flexibility

Open questions

- Poor software integration
- few algorithms
- few applications outside of physics studied

[^0]

1. Atomic clocks - Qubits in cold atoms
2. Optical tweezers - Trapped qubits in atoms
3. Rydberg atoms - Large scale entanglement
4. Moving particles - Bosons vs Fermions and the link to chemistry
5. Lattice gauge theories - Working on a really hard physics problem

What is time ?

Einsteins' special relativity:

Time is what a clock measures.

Experimentalists dilemma: What is a clock?

Something that ,ticks', i.e. provides a regular series of events

Traditional clocks

1 tick = few seconds

Problems:

- Not very stable
- Very slow ticking
- Reproducility

What is a good clock?

Stable

repeat with the same clock lots of measurements and get similar results

Precise

build several clocks and obtain same results

Characterization of clocks

let them tick for a long time
\square

What about precision?

We need a good standard and atoms give this

Atomic clocks

The Atom

$\mathscr{H}=E_{0}|0\rangle\langle 0|+E_{1}|1\rangle\langle 1|$

Atomic clocks

The Atom

The electric field

$$
\begin{aligned}
& \omega_{0}|2 p\rangle=|1\rangle \\
& |1 s\rangle=|0\rangle
\end{aligned}
$$

$$
\mathscr{H}=E_{0}|0\rangle\langle 0|+E_{1}|1\rangle\langle 1|
$$

$$
\mathbf{E}=E_{0}\left(e^{i \omega_{L} t+i \varphi}+e^{-i \omega_{L} t-i \varphi}\right)
$$

Atomic clocks

The Atom

$$
\mathscr{H}=E_{0}|0\rangle\langle 0|+E_{1}|1\rangle\langle 1|
$$

The electric field

$$
\mathbf{E}=E_{0}\left(e^{i \omega_{L} t+i \varphi}+e^{-i \omega_{L} t-i \varphi}\right)
$$

$$
\mathcal{H}=-\mathbf{d} \cdot \mathbf{E}
$$

$$
\mathbf{d}=d(|0\rangle\langle 1|+|1\rangle\langle 0|)
$$

The atom as a qubit

$$
\begin{aligned}
\mathcal{H} & =E_{0}|0\rangle\langle 0|+E_{1}|1\rangle\langle 1| \\
\mathcal{H} & =\frac{\hbar \omega_{0}}{2}|1\rangle\langle 1|-\frac{\hbar \omega_{0}}{2}|0\rangle\langle 0| \\
\mathcal{H} & =\frac{\hbar \omega_{0}}{2} \sigma_{z}
\end{aligned}
$$

\rightarrow write everything in terms of spins

$$
\sigma_{z}=\left(\begin{array}{cc}
1 & 0 \\
0 & -1
\end{array}\right)
$$

Interaction Hamiltonian

$$
\mathcal{H}=-\mathbf{d} \cdot \mathbf{E}
$$

$$
\begin{align*}
\mathbf{E} & =E\left(\mathrm{e}^{\mathrm{i} \omega t+\mathrm{i} \varphi}+\mathrm{e}^{-\mathrm{i} \omega t-\mathrm{i} \varphi}\right) \\
\mathbf{d} & =d\left(\sigma_{+}+\sigma_{-}\right)
\end{align*}
$$

Rotating frame:

$$
\mathcal{H}=\frac{d E}{2}\left(\sigma_{+} \mathrm{e}^{\mathrm{i} \varphi}+\sigma_{-} \mathrm{e}^{-\mathrm{i} \varphi}\right)
$$

$\mathcal{H} \sim \hbar \Omega\left(\sigma_{+} \mathrm{e}^{\mathrm{i} \varphi}+\sigma_{-} \mathrm{e}^{-\mathrm{i} \varphi}\right)$

$\mathcal{H} \sim \hbar \Omega\left(\sigma_{+}+\sigma_{-}\right)$
$\mathcal{H} \sim \hbar \Omega\left(\sigma_{+}-\sigma_{-}\right)$
$\mathcal{H} \sim \hbar \Omega \sigma_{x}$
$\mathcal{H} \sim \hbar \Omega \sigma_{y}$

Clocks as extremely precise qubits

Rotation about z-axis
Detuning
$\mathscr{H}=\hbar \Delta \hat{\sigma}_{z}$

Rotation about x-axis
Laser intensity
$\mathscr{H}=\hbar \Omega_{x} \hat{\sigma}_{x}$

$$
Z_{\pi / 2} \quad \Delta t=\frac{\pi}{2}
$$

$$
X_{\pi / 2} \quad \Omega_{x} t=\frac{\pi}{2}
$$

$Y_{\pi / 2}$
$\Omega_{y} t=\frac{\pi}{2}$

Example: Rabi oscillations

$$
\mathcal{H}=\hbar \Omega S_{x}
$$

time evolution: $\mathrm{e}^{\mathrm{i} \Omega \sigma_{x} t}$
Rotation about x-axis angle $\Theta=\Omega t$

Example: Offresonant Rabi oscillations

tilted rotation axis $J=\left(\begin{array}{c}\Omega \\ 0 \\ \Delta\end{array}\right)$
$\Delta \uparrow \Omega_{\text {eff }}=\sqrt{\Delta^{2}}+\Omega^{2}$
Ω

Back to our atomic clocks

Application: Time standard with Cesium fountain clock

${ }^{133}$ Cs: Hyperfine splitting 9.2 GHz
envelope $\times \cos \Delta E t / \hbar$
$\Delta \omega \times \Delta t \geq 1$

\rightarrow precision: $\frac{\Delta \omega}{\omega} \times \frac{1}{\sqrt{N}} \approx 10^{-13}$

Ramsey limitations

Detection better if atoms are slower

Measuring the red-shift on the millimeter scale

Ramsey limitations

Detection better if atoms are slower

- We know how to perform qubit operation.
- How can we cool these atoms ?
- How can we trap them individually ?

1. Atomic clocks - Qubits in cold atoms
2. Optical tweezers - Trapped qubits in atoms
3. Rydberg atoms - Large scale entanglement
4. Moving particles - Bosons vs Fermions and the link to chemistry
5. Lattice gauge theories - Working on a really physics hard problem

The idea of laser cooling

How to stop the atoms?
several $100 \mathrm{~m} / \mathrm{s}$

Oven at
several 100K

The idea of laser cooling

How to stop the atoms?

Some really cold atoms

Idea of Laser cooling by Wineland, Dehmelt, Hänsch and Schawlow (1975)

Microscopic idea of radiation pressure

The Zeeman slower

The MOT

static magnetic fields + radiation pressure

Trapping of Neutral Sodium Atoms with Radiation Pressure
E. L. Raab, ${ }^{(a)}$ M. Prentiss, Alex Cable, Steven Chu, ${ }^{(b)}$ and D. E. Pritchard ${ }^{(a)}$ AT\&T Bell Laboratories, Holmdel, New Jersey 07733 (Received 16 July 1987)

We report the confinement and cooling of an optically dense cloud of neutral sodium atoms by radiation pressure. The trapping and damping forces were provided by three retroreflected laser beams propagating along orthogonal axes, with a weak magnetic field used to distinguish between the beams. We have trapped as many as 10^{7} atoms for 2 min at densities exceeding 10^{11} atoms cm^{-3}. The trap was $=0.4 \mathrm{~K}$ deep and the atoms, once trapped, were cooled to less than a millikelvin and compacted into a region less than 0.5 mm in diameter

Doppler Cooling/Optical Molasses

atoms undergo diffusive motion and feel ,friction' from collisions with laser

Three-Dimensional Viscous Confinement and Cooling of Atoms
by Resonance Radiation Pressure
Steven Chu, L. Hollberg, J. E. Bjorkholm, Alex Cable, and A. Ashkin
AT\&T Bell Laboratories, Holmdel, New Jersey 07733
(Received 25 April 1985)
We report the viscous confinement and cooling of neutral sodium atoms in three dimensions via the radiation pressure of counterpropagating laser beams. These atoms have a density of about $\sim 10^{6} \mathrm{~cm}^{-3}$ and a temperature of $-240 \mu \mathrm{~K}$ corresponding to a rms velocity of $\simeq 60 \mathrm{~cm} / \mathrm{sec}$. This he atoms to escape a $0.2 \mathrm{~cm}^{3}$ confinement volume is $\sim 0.1 \mathrm{sec}$. the atoms to escape a $\sim 0.2-\mathrm{cm}^{3}$ confinement volume is $\sim 0.1 \mathrm{sec}$.

Doppler Cooling/Optical Molasses

Three-Dimensional Viscous Confinement and Cooling of Atoms by Resonance Radiation Pressure

Steven Chu, L. Hollberg, J. E. Bjorkholm, Alex Cable, and A. Ashkin
AT\&T Bell Laboratories, Holmdel, New Jersey 07733 (Received 25 April 1985)
We report the viscous confinement and cooling of neutral sodium atoms in three dimensions via he radiation pressure of counterpropagating laser beams. These atoms have a density of abou $\sim 10^{6} \mathrm{~cm}^{-3}$ and a temperature of $\sim 240 \mu \mathrm{~K}$ corresponding to a rms velocity of $\sim 60 \mathrm{~cm} / \mathrm{sec}$. This emperature is approximately the quantum limit for this atomic transition. The decay time for half the atoms to escape a $\sim 0.2-\mathrm{cm}^{3}$ confinement volume is $\sim 0.1 \mathrm{sec}$.

Doppler limit (lowest ,possible' temperature) $\quad T_{D} \approx 240 \mu K$

$$
\text { observed: } T \approx 240_{-60}^{+200} \mu K
$$

The miracle of subdoppler cooling

Comment by Steve Chu:

sure the velocity distribution. Our first measurements showed a temperature of $185 \mu \mathrm{~K}$, slightly lower than the minimum temperature allowed by the theory of Doppler cooling. We then made the cardinal mistake of experimental physics: instead of listening to Nature, we were overly influenced by theoretical expectations. By including a fudge factor to account for the way atoms filled the molasses region, we were able to bring our measurement into accord with our expectations.

The result by the Phillips group:

Lett et al. PRL 61169 (1988)

The miracle of subdoppler cooling

The miracle of subdoppler cooling

Comment by Steve Chu:
sure the velocity distribution. Our first measurements showed a temperature of $185 \mu \mathrm{~K}$, slightly lower than the minimum temperature allowed by the theory of Doppler cooling. We then made the cardinal mistake of experimental physics: instead of listening to Nature, we were overly influenced by theoretical expectations. By including a fudge factor to account for the way atoms filled the molasses region, we were able to bring our measurement into accord with our expectations

The result by. We know how to perform qubit operation.

- Atoms are really cold.
- How can we trap them individually ?

Lett et al. PRL 61169 (1988)

The dipole potential - making optical tweezers

The dipole potential is directly proportional to the intensity !

The dipole potential - making optical tweezers

The dipole potential is directly proportional to the intensity!

Tweezers and atom sorting

M. Endres et al., Science 354, 1024 (2016).

Tweezers and atom sorting

An atom-by-atom assembler of defect-free arbitrary 2d atomic arrays

Daniel Barredo, Sylvain de Léséleuc, Vincent Lienhard, Thierry Lahaye, Antoine Browaeys
INSTITUT
\qquad Institut d'Optique, CNRS
ParisTech

Tweezer clocks

Tweezer clocks

1. Atomic clocks - Qubits in cold atoms
2. Optical tweezers - Trapped qubits in atoms
3. Rydberg atoms - Large scale entanglement
4. Moving particles - Bosons vs Fermions and the link to chemistry
5. Lattice gauge theories - Working on a really physics hard problem

Rydberg atoms - Fast entanglement of neutral atoms

Qubit A
Qubit B

\square

Rydberg atoms - Fast entanglement of neutral atoms

Rydberg atoms - Fast entanglement of neutral atoms

Rydberg atoms - Fast entanglement of neutral atoms

A. Browaeys and T. Lahaye, Nat. Phys. 16, 132 (2020).

P. Schauß et al. Nature 491, 87 (2012).

Rydberg atoms - Fast entanglement of neutral atoms

A. Browaeys and T. Lahaye, Nat. Phys. 16, 132 (2020).

High fidelity entanglement
I. S. Madjarov et al. Nat. Phys. 16, 857 (2020).

Rydberg atoms as quantum simulators

Until now: Use the control to implement a universal gate set

Now: Use full control over the parameters of the Hamiltonian to solve specific problems.

Rydberg atoms as quantum simulators

$$
\mathscr{H}=\frac{\hbar \Omega}{2} \sum_{j} \sigma_{j}^{x}+\frac{\hbar \Delta}{2} \sum_{j} \sigma_{j}^{z}+\sum_{i \neq j} \frac{C_{6}}{r_{i j}^{6}} n_{i} n_{j}
$$

Quantum simulators with up to 51 atoms

H. Bernien et al. Nature 551, 579 (2017).

Rydberg simulators in 2D

Rydberg atoms as quantum simulators

$$
\mathscr{H}=\frac{\hbar \Omega}{2} \sum_{j} \sigma_{j}^{x}+\frac{\hbar \Delta}{2} \sum_{j} \sigma_{j}^{z}+\sum_{i \neq j} \frac{C_{6}}{r_{i j}^{6}} n_{i} n_{j}
$$

$$
-|0\rangle
$$

Schrödinger cats with 20 atoms

A. Omran et al. Science 365, 570 (2019).

Maximum Independent Sets

L. Henriet et al. Quantum 4, 327 (2020).
H. Pichler et al., ArXiv 1808.10816 (2018).

Possible applications to finance, network design

A
atom computing

Maximum Independent Sets

L. Henriet et al. Quantum 4, 327 (2020).
H. Pichler et al., ArXiv 1808.10816 (2018).

Possible applications to finance, network design

A computing
管穻PASQAL

Digital vs analog

	Analog Quantum Simula- tion	Digital Quantum Simula- tion
Resource used for simulation	Hamiltonians	Gates
Key advantages	Promising hybrid quantum- classical approaches	Universal approach ShortcomingsLimited number of available configurations
Requires a large number of gates		
Status	Quantum advantage already achieved	Academic research

L. Henriet et al. Quantum 4, 327 (2020).

1. Atomic clocks - Qubits in cold atoms
2. Optical tweezers - Trapped qubits in atoms
3. Rydberg atoms - Large scale entanglement
4. Moving particles - Bosons vs Fermions and the link to chemistry
5. Lattice gauge theories - Working on a really physics hard problem

What happens when you cool a gas?

Average velocity of thermal atoms:

$$
\langle | v\left\rangle=\sqrt{\frac{3 k_{B} T}{m}}\right.
$$

atoms = wave packets

$$
\lambda_{d B}=\frac{h}{m v}=\sqrt{\frac{h^{2}}{3 m k_{B} T}}
$$

Thermal de Broglie wavelength

High
Temperature T:
thermal velocity v density d^{-3}
"Billiard balls"
Low
Temperature T :
De Broglie wavelength
$\lambda_{\mathrm{dB}}=\mathrm{h} / \mathrm{mv} \propto \mathrm{T}^{-1 / 2}$
"Wave packets"
$\mathrm{T}=\mathrm{T}_{\text {crit }}$:
Bose-Einstein Condensation

$$
\lambda_{\mathrm{dB}} \approx \mathrm{~d}
$$

"Matter wave overlap"

$\mathrm{T}=0$:

Pure Bose condensate
"Giant matter wave"

How do you create a BEC ?

before BEC

How do you create a BEC ?

with BEC

Absorption Imaging

Spatial Information

Momentum Information

How do you see a BEC ?

Initial trap (Real space):

Time of flight cut the trap and let it expand freely

$$
\text { single atom }- \text { qubit }-\ell=1 / 2
$$

$$
\begin{array}{ll}
m_{F}=1 & \\
m_{F}=0 & |\psi\rangle=\alpha_{-1 / 2}|-1 / 2\rangle+\alpha_{1 / 2}|1 / 2\rangle
\end{array}
$$

$\hat{L}_{z}|n\rangle=n|n\rangle$ with integer $|n| \leq \ell \quad\left[\hat{L}_{x}, \hat{L}_{y}\right]=i \hat{L}_{z}$

$$
\text { single atom }- \text { qubit }-\ell=1 / 2
$$

$$
\begin{array}{ll}
m_{F}=1 & \\
m_{F}=0 & |\psi\rangle=\alpha_{-1 / 2}|-1 / 2\rangle+\alpha_{1 / 2}|1 / 2\rangle
\end{array}
$$

$$
\hat{L}_{z}|n\rangle=n|n\rangle \text { with integer }|n| \leq \ell \quad\left[\hat{L}_{x}, \hat{L}_{y}\right]=i \hat{L}_{z}
$$

$$
|\psi\rangle=\alpha_{-\ell}|-\ell\rangle+\cdots+\alpha_{\ell}|\ell\rangle
$$

N indistinguishable atoms - qudit $-\ell=N / 2$

Squeezing with cold atoms

Squeezing with cold atoms

On fermion vs bosons

${ }^{7} \mathbf{L i}$

$\mathrm{T}=\mathbf{8 1 0} \mathbf{n K}$

$\mathrm{T}=510 \mathrm{nK}$

$\mathbf{T}=\mathbf{2 4 0} \mathbf{n K}$
${ }^{6} \mathrm{Li}$

$\mathrm{T} / \mathrm{T}_{\mathrm{F}}=1.0$

$$
\mathrm{T} / \mathrm{T}_{\mathrm{F}}=0.56
$$

$T / T_{F}=0.25$
A. G. Truscott et al. Science 291, 2570 (2001).

On fermion vs bosons

Second quantization

Many particles: full wave-function has to be properly symmetrized

Bosons	
$\psi(1,2)=\psi(2,1)$	Fermions
$\psi(1,2)=-\psi(2,1)$	

Second quantization: work with creation operators at the given states
orthonormal base
lowering operator

$$
\hat{\psi}=\sum_{i} \varphi_{i}(x) \hat{a}_{i}
$$

$$
\left[\hat{a}_{i}, \hat{a}_{k}^{\dagger}\right]=\delta_{i k}
$$

$$
\left[\hat{\psi}(x), \hat{\psi}\left(x^{\prime}\right)^{\dagger}\right]=\delta\left(x-x^{\prime}\right)
$$

$$
\begin{aligned}
\left\{\hat{a}_{i}, \hat{a}_{k}^{\dagger}\right\} & =\delta_{i k} \\
\left\{\hat{\psi}(x), \hat{\psi}\left(x^{\prime}\right)^{\dagger}\right\} & =\delta\left(x-x^{\prime}\right)
\end{aligned}
$$

Number states of bosons and fermions

Single orbit

$$
\begin{gathered}
\text { Bosons } \\
\hat{a}^{\dagger}|0\rangle=|1\rangle \\
\hat{a}^{\dagger}|1\rangle=\sqrt{2}|2\rangle \\
\vdots \\
\hat{a}^{\dagger}|n\rangle=\sqrt{n+1}|n+1\rangle
\end{gathered}
$$

$$
\begin{gathered}
\text { Fermions } \\
\hat{a}^{\dagger}|0\rangle=|1\rangle \\
\hat{a}^{\dagger}|1\rangle=0
\end{gathered}
$$

Number states of bosons and fermions

Site $1 \quad$ Site 2

Bosons
$\hat{a}_{j}^{\dagger}\left|n_{0}, \cdots, n_{j}, \cdots\right\rangle=\sqrt{n_{j}+1}\left|n_{0}, \cdots, n_{j}+1, \cdots\right\rangle$

Site i

- \ldots
$\hat{a}_{j}^{\dagger}\left|n_{0}, \cdots, n_{j}, \cdots\right\rangle=(-1)^{\Sigma_{i j} n_{i}} \sqrt{1-n_{j}}\left|n_{0}, \cdots, n_{j}+1, \cdots\right\rangle$

Sign problem

Number states of bosons and fermions

Site $1 \quad$ Site 2

Bosons

Site i ,

One fermion at a time

L. Bayha et al., arXiv 2004.14761 (2020).

Fermions in different tweezers

Now let's go real big - the optical lattice

Optical lattice with potential: $\quad V_{L}=V_{0} \sin ^{2}\left(k_{L} x\right) \quad k_{L}=\frac{\pi}{a_{L}}$

Higher dimensional lattice

Cross the polarization !

Higher dimensional lattice

Zwerger et al. RMP

Bose-Hubbard Model

$$
H=-J \sum_{\langle i, j\rangle}\left(a_{i}^{\dagger} a_{j}+\text { h.c. }\right)+\frac{U}{2} \sum_{i} n_{i}\left(n_{i}-1\right)
$$

$U \ll J$
Superfluid

- Large number fluctuations
- Coherent state on-site

W:an
interaction U
$J \ll U$

Mott insulator

- No number fluctuations
- Fock state on-site

Observation

weak lattice
deep lattice

Observation

weak lattice
deep lattice

And it is reversible:

Greiner et al., Nature 41539 (2002)

In-situ observation

J. Sherson et al. Nature 46768 (2010)

W. Bakr et al. Science 329547 (2010)

Single-Particle Quantum Walk

Single realization

Single-Particle Quantum Walk

Single-Particle Quantum Walk

Single realization
Average density evolution

The Fermi-Hubbard model

Putting chemistry into the machines - electronic structure

What are the electronic properties of molecules ?

J. Argüello-Luengo et al. Nature 574, 215 (2019).

Putting chemistry into the machines - vibrational spectra

Putting chemistry into the machines

Looks an awful lot like bosonic Hubbard problem
C. Sparrow, Nature 557, 660 (2018).

Electron structure

Looks an awful lot like fermionic Hubbard problem
J. Argüello-Luengo et al. Nature 574, 215 (2019).

Putting chemistry into the machines

Electron structure

Looks an awful lot like fermionic Hubbard problem
J. Argüello-Luengo et al. Nature 574, 215 (2019).

1. Atomic clocks - Qubits in cold atoms
2. Optical tweezers - Trapped qubits in atoms
3. Rydberg atoms - Large scale entanglement
4. Moving particles - Bosons vs Fermions and the link to chemistry
5. Lattice gauge theories - Working on a really hard physics problem

$$
\begin{gathered}
\mathscr{L}_{Q E D}=\bar{\psi}\left(i \gamma^{\mu} D_{\mu}-m\right) \psi-\frac{1}{4} F^{\mu \nu} F_{\mu \nu} \\
\mathscr{L}_{Q C D}=\sum_{f i} \bar{\psi}^{f i}\left(i \gamma^{\mu} D_{\mu i j}-m_{f}\right) \psi^{f i}-\frac{1}{2 g^{2}} \operatorname{Tr}\left(G^{\mu \nu} G_{\mu \nu}\right)
\end{gathered}
$$

Particle
Gauge field

$$
\begin{gathered}
\mathscr{L}_{Q E D}=\bar{\psi}\left(i \gamma D_{\mu}-m\right) \psi-\frac{1}{4} F^{\mu \nu} F_{\mu \nu} \\
\mathscr{L}_{Q C D}=\sum_{f i} \bar{\psi}^{f i}\left(i \gamma\left(D_{\mu i j}-m_{f}\right) \psi^{f i}\right)-\frac{1}{2 g^{2}} \operatorname{Tr}\left(G^{\mu \nu} G_{\mu \nu}\right)
\end{gathered}
$$

Particle
Gauge coupling
Gauge field

J. Schwinger, Phys. Rev. 714, 16 (1951).

J. Schwinger, Phys. Rev. 714, 16 (1951).

$$
E_{c}=\frac{m_{e}^{2} c^{3}}{\hbar q_{e}} \approx 10^{18} \mathrm{~V} / \mathrm{m}
$$

$\log \mathrm{E}$
J. Schwinger, Phys. Rev. 714, 16 (1951).

$$
E_{c}=\frac{m_{e}^{2} c^{3}}{\hbar q_{e}} \approx 10^{18} \mathrm{~V} / \mathrm{m}
$$

Can we construct a quantum simulator?

First digital implementation with ions

Symmetry-protecting quantum circuit

1.) Initialization
2.) Manipulation and evolution
3.) Read-out

Mil et al. Science $\mathbf{3 6 7}, 1128$ (2020)
1.) Initialization
2.) Manipulation and evolution

3.) Read-out

Mil et al. Science 367,1128 (2020)
1.) Initialization
2.) Manipulation and evolution

3.) Read-out

Mil et al. Science 367, 1128 (2020)
1.) Initialization

Mil et al. Science 367,1128 (2020)

$L_{z} / L=-0.188$

$$
\hat{H} / \hbar=\chi \hat{L}_{z}^{2}+\frac{\Delta}{2}\left(\hat{b}_{p}^{\dagger} \hat{b}_{p}-\hat{b}_{v}^{\dagger} \hat{b}_{v}\right)+\lambda\left(b_{v}^{\dagger} \hat{L}_{-} \hat{b}_{v}+b_{v}^{\dagger} \hat{L}_{+} \hat{b}_{p}\right)
$$

$$
L_{z} / L=-0.188
$$

$\hat{H} / \hbar=\chi \hat{L}_{z}^{2}+\frac{\Delta}{2}\left(\hat{b}_{p}^{\dagger} \hat{b}_{p}-\hat{b}_{v}^{\dagger} \hat{b}_{v}\right)+\lambda\left(b_{v}^{\dagger} \hat{L}_{-} \hat{b}_{v}+b_{v}^{\dagger} \hat{L}_{+} \hat{b}_{p}\right)$

$$
L_{z} / L=-0.188
$$

$L_{z} / L=-0.418$
matter field
gauge field

Universal QC with atomic mixtures

Possible projects (in qiskit-cold-atoms)

Rydberg atoms for optimization problems

Lattice systems for itinerant particles

Squeezing on superconducting circuits

Universal QC with atomic mixtures
phonon interaction

Digital and analog quantum simulators for lattice gauge theories

[^0]: Lukin group, Harvard university

