

UNIVERSITÄT HEIDELBERG ZUKUNFT SEIT 1386

Data Re-Uploading on Qudits

Noah L. Wach¹, Manuel S. Rudolph^{1,2}, Sebastian Schmitt³, Fred Jendrzejewski¹

¹Kirchhoff-Institut für Physik, Universität Heidelberg, Im Neuenheimer Feld 227, 69120 Heidelberg, Germany ²Zapata Computing Canada Inc., 325 Front St W, Toronto, ON, M5V 2Y1, Canada ³Honda Research Institute Europe GmbH, Carl-Legien-Str. 30, 63073 Offenbach, Germany noah wach@stud uni-heidelberg de

SynQS

noan.wach@stud.uni-heideiberg.de		
Quantum Algorithm - Data Re-Uploading	Qudits	
 Belongs to the family of supervised machine learning algorithm Objective: Find map between data X and labels Y Quantum algorithm consists of multiple layers (similarly to classical neural net) Each layer contains two steps: \$\hightarrow (\overline x_i)\$) Encode datapoint \$x_i\$ with weight \$\overline u\$ is using rotations Use alternating \$\mathcal{R}_x(x)\$ and \$\mathcal{R}_z(x)\$ rotations \$\hightarrow (\overline \overline \overlin	 General description: <i>d</i>-level generalization of qubit Represented by vector in the d-dimensional Hilbertspace: ψ⟩ = c₀ 0⟩ + c₁ 1⟩ + c_{d-1} d - 1⟩ Can be represented on a Bloch sphere via Husimi-Q distribution (quasi probability distribution) Qudits are controlled via <i>d</i>-dimensional angular momentum 	Image: constrained of the second of the se
up in desired state $ y\rangle$ – Structure: $\mathcal{R}_x(\theta) \mathcal{R}_z(\theta) \mathcal{R}_x(\theta) \mathcal{R}_{zz}(\theta)$	operators of total angular momentum $\ell = \frac{d-1}{2}$, and angular momentum quantum number $m = z - \frac{d-1}{2} \in \{-\ell \dots, \ell\}$)	Husimi-O distribution

• Through repeated application of layers algorithm gains expressivity

This results in:

$|\psi(\mathbf{x}_i, \boldsymbol{\theta}, \omega)\rangle = \hat{S}(\omega_1 \mathbf{x}_i) \widehat{W}_1(\boldsymbol{\theta}) \dots \hat{S}(\omega_n \mathbf{x}_i) \widehat{W}_n(\boldsymbol{\theta}) |\psi_0\rangle = \widehat{U}(\mathbf{x}_i, \boldsymbol{\theta}, \omega) |\psi_0\rangle$

$$|0\rangle - S(\omega_1, x_i) - W_1(\theta) - S(\omega_2, x_i) - W_2(\theta) - \cdots - S(\omega_n, x_i) - W_n(\theta) - \swarrow \langle \overline{y} \rangle$$

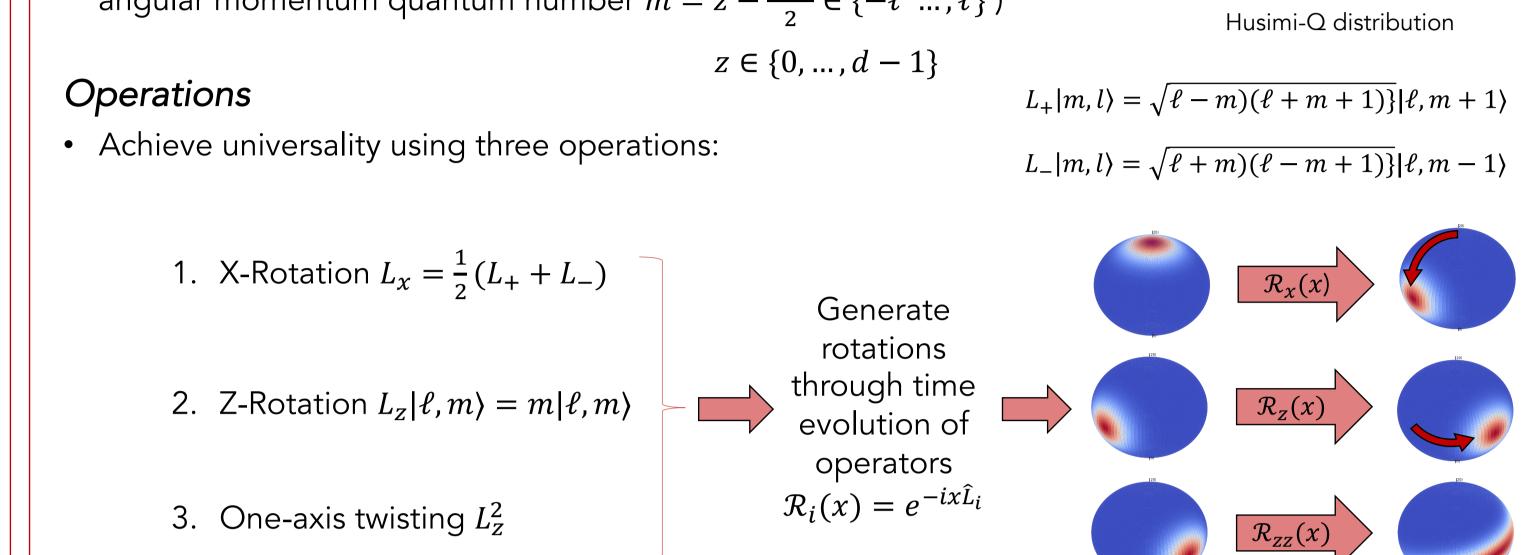
- Associate quantum states to labels $y \in Y$
- Layer *n* with one encoding and one training block
- <u>Goal</u>: Maximize overlap P with desired state $|y\rangle$

• Address *d*-class classification problem with **one** qudit

• $P(y|\mathbf{x}_i, \boldsymbol{\theta}, \omega) = |\langle y|\psi(\mathbf{x}_i, \boldsymbol{\theta}, \omega)\rangle|^2$

Simple Classification Tasks

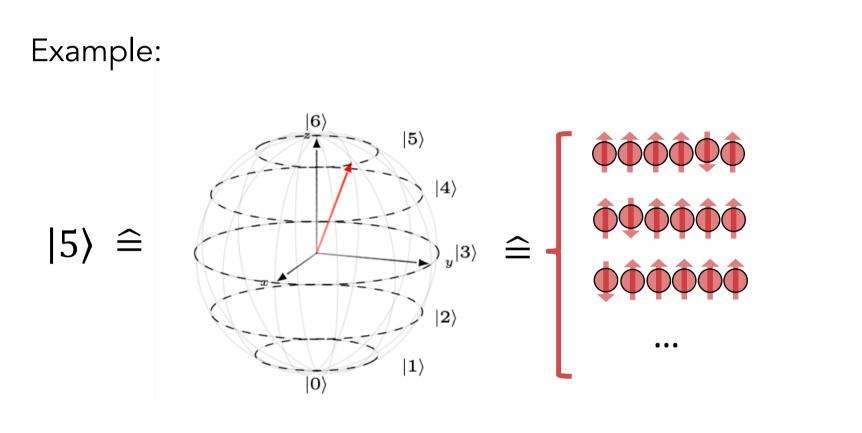
<u>Goal</u>: Classify points in 2D plane into one of n classes depending on their x-y position

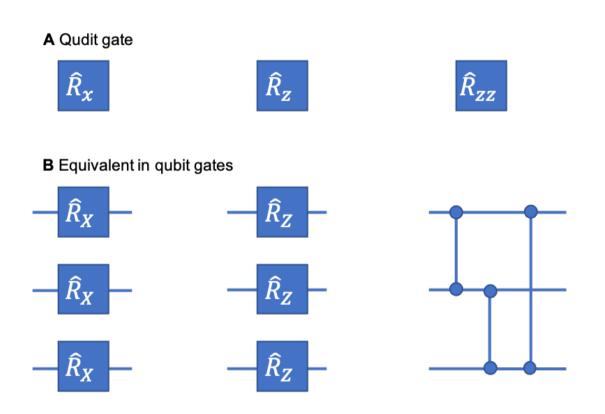

Ordered Unordered

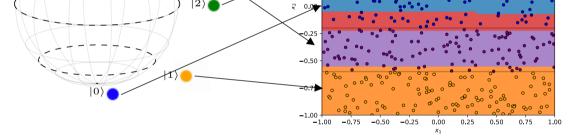
Two Cases:

- 1. Ordered stripes
 - Order of stripes corresponds to order on qudit
- \rightarrow 3 layers are sufficient to achieve accuracies above 95%

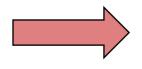
2. Unordered stripes


Order of stripes <u>does</u> <u>not</u> correspond to order on qudit \rightarrow Over 6 layers are needed to achieve accuracies above 80%




Connection to qubits:

• Running the data re-uploading algorithm on qubit based NISQ devices


 \rightarrow Represent one qudit using multiple qubits

Algorithm tries to suppress in between classes \rightarrow Succeeds with more layers

Model has **bias** towards data matching order of labels on qudit

Bias can be reduced by applying more layers

Classifying MNIST

How does the algorithm perform on a real-world dataset?

Learn the parts of the MNIST dataset (digits 0, 1, 2)

Qudit state corresponds to label ($|0\rangle \cong 0$, ...), dimension of qudit $d = 3 \rightarrow \ell = 1$

<u>Setup:</u>

- 1. Reduce dataset to 3 dimensions using PCA
- 2. Use model with 2 layers
- 3. Train model over 50 epochs
- 4. Test on unseen data

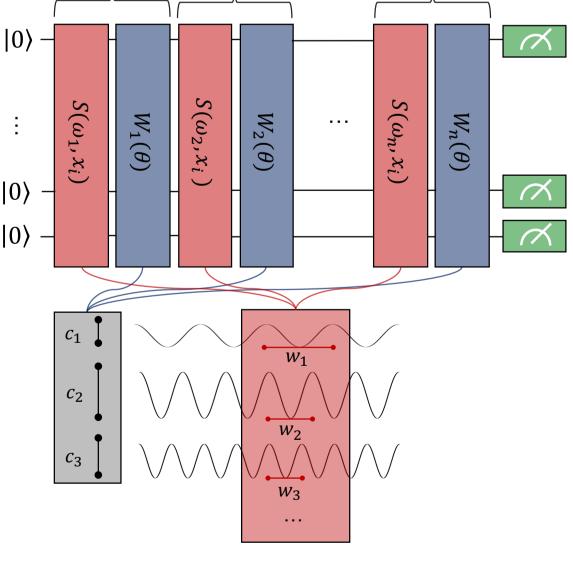
Preliminary Results:

Accuracy on exact simulator:

eCun, Yann and Cortes, Corinna. MNIST handwritten digit database." (2010)

 $-W_n(\theta)$

Accuracy on IBMQ hardware:

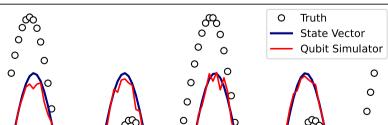

Can we construct a quantum machine learning algorithm using qudits?

Expressivity of Data Re-Uploading Circuits

- Express quantum model as partial Fourier series
- Repeated encoding and train blocks increases expressivity
- In our case: Number of Fourier coefficients = $2 \cdot L \cdot \ell$
- with L as number of layers and qudit spinlength ℓ Two approaches:
- 1. Train and evaluate using exact state vector representation
 - \rightarrow Exact, no noise, can be simulated easily
- 2. Train and evaluate using IBMQ qubit simulator

----- State Vector — Qubit Simulator

 \rightarrow Noisy, is evaluated statistically using shots, can also be run on real hardware



Layer 2

Layer n

Learn exact Fourier coefficients

$f(x) = a * \cos(b * x) + c * \cos(d * x)$

0.75 -

0.50 - 💰

0.25 -

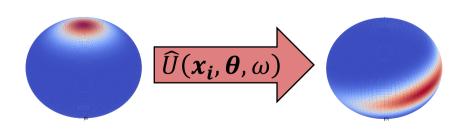
0.00 -

-0.25 -

-0.50 -

-0.75 -

-6


-4

-2

0

Model with $\ell = 1$ and L = 1

→ not enough Fourier

For small d, hardware not a limiting factor \rightarrow Further expand model on entire dataset

Conclusion & Outlook

- It is possible to learn on real quantum hardware
- Qudit approach improves stability of algorithm \rightarrow performs well on current NISQ devices Future Goals:
- Expand Model onto entire MNIST dataset
- Improve reliability of quantum algorithm

0 0.00 --0.25 -0.50 --0.75 --6 O Truth

coefficients for approximation

Model with $\ell = 1$ and L = 2

 \rightarrow successful approximation

Qubit simulator inaccuracies are due to the shot noise

Model can learn any number of Fourier coefficients of dataset with sufficiently many layers

