Dynamics of open quantum systems in artificial neural networks APS March Meeting 2021 – Group A21

Moritz Reh¹, Markus Schmitt², Martin Gärttner^{1,3,4}

¹Kirchhoff-Institut für Physik, Universität Heidelberg, Im Neuenheimer Feld 227, 69120 Heidelberg, Germany ²Institut fur Theoretische Physik, Universität zu Köln, 50937 Köln, Germany ³Physikalisches Institut, Universität Heidelberg, Im Neuenheimer Feld 226, 69120 Heidelberg, Germany ⁴Institut für Theoretische Physik, Ruprecht-Karls-Universität Heidelberg, Philosophenweg 16, 69120 Heidelberg, Germany

Ouantum Systems

Dynamics of Open Quantum Systems Why simulate Open Quantum Systems?

However: Simulations of these kinds of dynamics (naively) are exponentially hard!

Here: New method to simulate these dynamics based on variational approximation using neural networks.

Outline: 1 theory slide + 2 result slides

Our method in contrast to previous works What's new?

Previous Works

Purification-based RBM:

- Hartmann & Carleo (Phys. Rev. Lett. 122)
- Yoshioka & Hamazaki (Phys. Rev. B 99)
- Nagy & Savona (Phys. Rev. Lett. 122)
- Vicentini et. al. (Phys. Rev. Lett. 122)

Advantage: Explicit parameter updates Disadvantage: Restriction to RBM based architecture

Gradient-descent based:

 Luo et. al. (arXiv:2009.05580)
Advantage: Very general, No limitations in network architecture
Disadvantage: Costly global optimization, potentially run into local minima

Conclusion: "Best of both worlds" – Explicit, second-order accurate parameter updates without fundamental limitations in the network architecture. Efficiency guaranteed by sampling S and F.

Remarks: Identical* to the TDVP for pure states (Carleo & Troyer, $\psi \leftrightarrow P$, $H \leftrightarrow \mathcal{L}$). Number of variational parameters limited by the inversion of S (~ 5000). Results are obtained in 1D and 2D systems using Recurrent Neural Networks.

Results on prototypical spin models Performance in regimes beyond ED

Confinement Physics

What effect does dissipation have on the confinement dynamics?

Originial work: Real-time confinement following a quantum quench to a non-integrable model, nature physics (2017), Kormos et. al.

Space

Conclusion: Novel method to simulate dissipative quantum dynamics with unexplored potentials, which can make full use of GPUs and modern compute clusters. Questions & comments? Email: moritz.reh@kip.uni-heidelberg.de | Twitter: @GaerttnerGroup, @RehMoritz | Web: mbqd.de