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Why neuromorphic hardware for neural quantum states?

BrainScaleS-2 (BSS2) Spiking neural network
neuromorphic chip (SNN)

™ Synapse drivers [

* BSS2 implements physical SNN as continuous dynamical system
* inherent parallelism enables fast sampling independent of network size

* recently Czischek et al., arXiv:2008.01039 (2020), show high-fidelity encoding of
Bell pairs
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