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▪ Directly encoding the density matrix may be challenging for a neural network

▪ Instead transition to probabilistic representation (POVMs)

▪ 𝑃𝒂 = tr 𝜌𝑀𝒂 , 𝒂 ∈ {1, … , 4𝑁}

▪ 𝜌 = 𝑃𝒂𝑇−1𝒂𝒃𝑀𝒃

Motivation

▪ The quantum state 𝜌 of a many-body system is an object whose complexity

scales exponentially in the particle number 𝑁

▪ In many cases, the quantum state of interest has a lot of structure and can be

described with fewer parameters

▪ Here, Artificial Neural Networks (ANNs) can be used to parameterize the state.

Their generalization properties are well established, e.g. for images (MNIST).

The POVM-formalism

Probability simplex & 
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Neural Network Quantum State Tomography [2]

Why neural networks are a suited tool

Dimensionality reductionPattern recognition Generating samples

Find features that allow to generalize on 

unseen data

Finding lower dimensional / compressed 

representations of data (e.g. PCA)
Obtain samples that are representative of 

encoded probability distributions
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Time-dependent variational principle for open quantum systems with artificial neural networks [1] 

Illustration of the variational approach to OQS dynamics. The righthand 
side shows the variational approach with the new TDVP equation.

Dissipative dynamics in an anisotropic Heisenberg 
model with 𝑁 = 40 spins (1D).

Spreading of correlation in a confinement 
model with dissipation, 𝑁 = 32 (1D).

Working principle and advantages of NN-QST Representing 1D Ising groundstates better than MLE (s=#Samples/4^N)

Variational ground state search with spiking neural nets on the BrainScaleS-2 neuromorphic hardware [3]

Results for quantum Ising model
Top: learning curves of the energy 
difference, Right: Deviations as function 
of the system size (fixed network)
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Spiking version

BrainScaleS-2 (BSS2)
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⚫ BSS2: analog LIF neuron circuits
⚫ Neural sampling for RBMs 

independent of system size
⚫ z-basis representation  

Experimental 
Dataset (Expensive!)
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Linear Inversion 

Max. Likelihood

Neural Network Maximum Likelihood

Standard Methods

Need many samples
or

High complexity

over state-specific
variational manifold
using Adam Optimizer


