dynamical gauge fields

NaLi machine

Atomic mixture of sodium and lithium

Scalable cold-atom quantum simulator for two-dimensional QED

We propose a scalable analog quantum simulator for quantum electrodynamics (QED) in two spatial dimensions. The setup for the U(1) lattice gauge field theory employs inter-species spin-changing collisions in an ultra-cold atomic mixture trapped in an …

Non-Abelian gauge invariance from dynamical decoupling

Lattice gauge theories are fundamental to such distinct fields as particle physics, condensed matter or quantum information theory. The recent progress in the control of artificial quantum systems already allows for studying Abelian lattice gauge …

Experimental realization of U(1) gauge invariance in ultracold atomic mixtures

This thesis reports on the experimental realization of an elementary building block for analog quantum simulation of a U(1) lattice gauge theory in a mixture of two bosonic quantum gases. Experimentally, the building block is realized by …

What are dynamical gauge fields ? A simplistic introduction by an AMO experimentalist.

Dynamical gauge fields are a fundamental concept of high-energy physics. However, learning about them typically takes enormous amounts of time and effort. As such, they are typically a bit mystical to students (including me) of other fields of physics like condensed-matter or AMO. Here, we will give a simple introduction into some of the concepts that might allow for the quantum simulation of these theories with ultracold atomic gases.The reader should know about second quantization and the basics of quantum mechanics as the arguments are based on this formalism.