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Observation and Characterization of the Bichromatic Force on
Metastable Argon-40

The 39Ar dating accuracy of the Atom Trap Trace Analysis experiment in
Heidelberg is depending on the sample size and measuring time which can be
reduced by increasing the current atmospheric 39Ar count rate of [3.58 ± 0.10]
atoms

h . The collimator has great scope for improvements as it can only address
∼ 10% of the atoms leaving the source due to its limited capture range.
Therefore, faster transverse atoms have to be cooled down beforehand, but due
to the short interaction time, a strong light force is necessary to capture them.
The bichromatic force is using two frequencies that are equally detuned from
atomic resonance to exceed the limits of the radiative force. Its demonstration
and characterization on a collimated beam of metastable 40Ar atoms is presented
in this work. Basically, the force is only limited by the available power and was
determined experimentally and theoretically in dependence of optical power,
relative phase, detuning and Doppler shift of the atoms. In the scope of this
work, the optics for the required frequencies have been set up and the theoretical
values have been calculated with the π-pulse model, Dressed States and optical
Bloch equations. A bichromatic force of [2.95 ± 0.54]Frad was measured with
the experimental accessible parameters which corresponds to ∼ 80% of the
theoretical predicted value.

Beobachtung und Charakterisierung der Bichromatischen Kraft an
Metastabilem Argon-40

Die Genauigkeit der 39Ar Datierung vom Atom Trap Trace Analysis Experiment
in Heidelberg hängt von der Probengröße und Messzeit ab, die durch Erhöhung
der derzeitigen atmosphärischen Zählrate von [3.58±0.10] Atomen

h reduziert werden
können. Der Kollimator bietet viel Raum für Verbesserungen, da er wegen seines
limitierten Einfangbereiches nur ∼ 10% der Atome adressieren kann, welche die
Quelle verlassen. Transversal schnellere Atome müssen deswegen zwischen Quelle
und Kollimator verlangsamt werden, wofür aufgrund der kurzen Interaktionszeit
eine starke Lichtkraft benötigt wird. Die bichromatische Kraft verwendet zwei
Frequenzen, die gleichermaßen von der Atomresonanz verstimmt sind, um das
Limit der radiativen Kraft zu überschreiten. Ihre Demonstration und Charakter-
isierung an einem kollimierten Strahl von metastabilen 40Ar Atomen wird in dieser
Arbeit gezeigt. Die Kraft ist prinzipiell nur durch die verfügbare Leistung limitiert
und wurde in Abhängigkeit von optischer Leistung, relativer Phase, Verstimmung
und Dopplerverschiebung der Atome experimentell und theoretisch bestimmt. Im
Rahmen dieser Arbeit wurde hierfür die Optik zur Erzeugung der benötigten
Frequenzen aufgebaut und die theoretischen Werte wurden mit Hilfe von π-Puls
Modell, Dressed-Atom-Modell und optischen Bloch Gleichungen berechnet. Mit
den experimentell zugänglichen Parametern wurde eine bichromatische Kraft von
[2.95± 0.54]Frad gemessen, die ∼ 80% des berechneten Wertes entspricht.
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Preface

The radioactive isotopes of noble gases play important roles in environmental physics

and are used for different dating methods, as they are inert due to their electronic config-

uration [1]. Argon and krypton are part of the atmosphere and two of their radioactive

isotopes1 are of special interest due to the half-lives of 269 years for 39Ar and 229.000

years for 81Kr [2]. However, the low relative atmospheric abundance 39Ar
Ar = 8 · 10−16

and 81Kr
Kr = 5 · 10−13 [3] hinders the routine use of established techniques such as Low-

Level Counting (LLC) and Accelerator Mass Spectrometry (AMS) [4] due to sample sizes,

measurement times and costs.
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Figure 1: Dating ranges of different radioactive tracers that are important
in hydrology (adapted from [5]). Several nuclear bomb tests have been per-
formed in the 1950's which created some fast decaying isotopes and the verti-
cal line marks the bomb peak in 1955 [6]. 39Ar has a half-life of 269 years [2]
and covers a range where no other isotopes are available.

1Another interesting tracer is the anthropogenically produced 85Kr with half-life of 10.8 years.
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Atom Trap Trace Analysis (ATTA) is a method that has been developed in the past two

decades for routine measurements of rare 81Kr using standard techniques of atom op-

tics [7]. On an atomic level, the mass difference and nuclear spin shifts the resonance

frequency of the transitions of interest in the range of a few hundred MHz. The isotopes

become distinguishable if many cycles of absorption and spontaneous emission are con-

sidered, which is the case in a Magneto-Optical Trap (MOT) [8]. The ATTA experiment

in Heidelberg is a collaboration between the environmental physics group of Prof. Dr.

Werner Aeschbach-Hertig and the atom optical group of Prof. Dr. Markus K. Oberthaler

and focuses on argon [9]. The half-life of 269 years for 39Ar [2] covers a gap between 50

and 1000 years before present that is not occupied by other isotopes as shown in Figure

1. Thus, 39Ar is suitable for dating of groundwater and alpine glaciers in the time span

of anthropogenic influences.

The current count rate of ATTA in Heidelberg is [3.58 ± 0.10] atoms
h for atmospheric

39Ar [10]. This has to be improved for increasing the accuracy of measurements or to

reduce the sample size and measuring time. A collimator is used for transverse cooling

of the metastable argon beam that has a HWHM of∼ 85m
s
when leaving the source [11].

Due to the limited capture range∼ ±30m
s
of the collimator [10], only about one tenth of

the atoms are actually reaches the MOT. To increase the count rate, faster atoms have to

be slowed down between the source and collimator but a strong force is necessary due

to the short interaction time.

A possible candidate for this purpose is the bichromatic force that exceeds the radiative

force if certain conditions can be fulfilled. It was first proposed in [12] and uses two

frequencies detuned equally from atomic resonance. So far, it has been demonstrated

for Na [12], Cs [13], Rb [14] and He [15]. In the scope of this work, it is shown for

the first time on metastable 40Ar atoms to study the possible applications for the ATTA

experiment that have been proposed in [16].
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Chapter 1

Fundamentals

1.1 Atom Trap Trace Analysis

The Atom Trap Trace Analysis experiment in Heidelberg is developed to perform rou-

tine measurements of 39Ar using standard techniques of atom optics. The 39Ar isotope

is of special interest in environmental physics due to its half-life of 269 years and is de-

tected on a single atom counting level in ATTA [17, 18]. The low relative abundance of
39Ar
Ar = 8 · 10−16 [3] requires an efficient apparatus and since the current count rate of

39Ar is only 3.58± 0.10 atoms
h [10], the stability of the system has to be ensured for a few

days.

Figure 1.1 shows a schematic diagram of the most important components1 of the current

ATTA setup. The parts are only briefly described here as they are well documented in

past publications of the workgroup [5, 16, 18--21]. A more detailed schematic diagram

can be found in Appendix A.

The ground state argon atoms enter the apparatus in the nitrogen cooled source, where a

RF-discharge excites a part to the metastable level of interest. A collimator with a tilted

mirror design is used for transverse cooling and the atom beam is further focused with

a two-dimensional Magneto-Optical Trap that is called Magneto-Optical Lens (MOL) in

the setup. The Zeeman-Slower reduces the velocity distribution so that the longitudinal

1The exact efficiencies of these components at the time of this work can be found in [16].
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1.2. PROPERTIES OF ARGON-40
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Figure 1.1: The setup of the Atom Trap Trace Analysis experiment in Hei-
delberg. The compontens are from left to right: metastable argon source,
transverse collimator, Magneto-Optical Lens (MOL), 40Ar quench laser beam,
Zeeman-Slower, Magneto-Optical Trap (MOT), atom beam imaging tool.

velocity of the atoms are low enough to be caught in the subsequent three-dimensional

Magneto-Optical Trap. There, a CCD camera and an Avalanche Photodiode (APD) are

used to detect the fluorescence of single trapped atoms.

The design of the laser system enables switching to the resonances of different isotopes,

especially the stable references 40Ar and 38Ar and the radioactive 39Ar. The different fre-

quencies needed are documented in [20]. The atom beam imaging tool maps the cross

section of an 40Ar beam to a CCD camera and can be used for adjustments of the setup.

For detection of 39Ar, a quench transition [21] is used to reduce the 40Ar background

by pumping these metastables back to the ground state. The fluorescence signal of the

quench is also used as an atom flux monitoring to quantify the efficiency of the source.

1.2 Properties of Argon-40

In this work, only 40Ar is used to observe and measure the bichromatic force as it is

much easier to handle due to the relative abundance of 99.9% and its vanishing nuclear

spin.
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CHAPTER 1. FUNDAMENTALS
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Figure 1.2: A schematic diagram of the 40Ar energy levels that are of interest
for this work given in Paschen notation [19]. The cooling transition from the
metastable 1s5 to 2p9 is closed due to the selection rule ∆J = 0,±1 of the
total angular momentum. The levels split further into different magnetic sub-
levels mJ with different transition strengths, where circular polarized light
can be used to couple the stretched states. A quenching transition can be used
to excite the metastable 40Ar atoms to the 2p8 level, from where they decay
to the ground state. A more detailed level scheme is given in Appendix B.

Figure 1.2 shows a schematic diagram of the 40Ar energy levels that are of interest in the

scope of this work. The states are given in Paschen-Notation [19]. As described in the

last section, the ground state argon atoms are excited with a RF-discharge in the nitro-

gen cooled source tube. This process distributes the atoms into different higher states

where two metastable states with forbidden dipole transition to the ground state exist.

The relevant state for ATTA is the 1s5 metastable level since a closed transition to the

1p9 level exists due to the selection rule ∆J = 0,±1 of the total angular momentum.

This transition is used for laser cooling in the experiment.

The states of the closed transition 1s5 → 2p9 split further into magnetic sublevels with

mJ = −J,−J + 1, ...,+J . This leads to a lot of possible excitations, that are shown in

Figure 1.2, where the strength of these transitions is normalized to the weakest dipole

moment. The selection rule for the magnetic sublevels is ∆mJ = 0 for linearly polar-

ized light (π) and ∆mJ ± 1 for circularly polarized light (σ+ or σ−). Using one of the

latter will drive the 40Ar atom into the stretched states with maximalmJ where it can be

regarded as two-level system since only transitions withmJ = ±2 ↔ mJ = ±3 occur.
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1.3. INTERACTION OF ATOMS WITH LIGHT

Another important transition is from the metastable 1s5 to 2p8, from where the dipole

transition to the 1s4 level is allowed. There, the atom will decay further down to the

ground state, which can not be addressed by the laser system anymore. This process

allows the control of the metastable 40Ar atom flux, as the atoms can be completely

quenched out of resonance. In a 39Ar measurement, this reduces the background due to

off-resonant excitations of 40Ar in theMOT.The 842 nm fluorescence signal is monitored

[16] and can be used to quantify the atom flux since each atom emits only one photon.

1.3 Interaction of Atoms with Light

This section deals with atom-light interactions and gives a brief summary of the basic

concepts that have been developed in the past century. It mainly follows [22] and covers

those aspects that are necessary for understanding bichromatic cooling.

1.3.1 Rabi Oscillations

The description starts with an atom in an electromagnetic field. The time-dependent

Schrödinger equation is:

Ĥ|Ψ(~r, t)〉 = i~
∂

∂t
|Ψ(~r, t)〉 (1.1)

Here, Ĥ is the total Hamiltonian of the system, |Ψ〉 the one electron wavefunction and

~r the coordinate of the electron. A semiclassical approach, where the atom is treated

quantum mechanically with a classical radiation field leads to the separation Ĥ = Ĥ0 +

Ĥ ′(t). The interaction of the atom with the light field is given by Ĥ ′(t) and the atomic

part can be described by the time-independent Schrödinger equation

Ĥ0|Φn(~r)〉 = En|Φn(~r)〉 (1.2)

where Ĥ0 is the field-free atomic Hamiltonian with eigenvalues En = ~ωn and corre-

sponding eigenfunctions |Φn〉. Using the time-evolution operator Û(t) = e−i
Ĥ0
~ t [23],
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CHAPTER 1. FUNDAMENTALS

the wavefunction |Ψ(~r, t)〉 can be expanded in the basis {|Φn(~r)〉}:

|Ψ(~r, t)〉 =
∑
k

ck(t)|Φk(~r)〉e−iωkt (1.3)

The ck(t)'s are the time-dependent coefficients of the orthogonal sum. Using (1.3) and

the separatedHamiltonian from above in the time-dependent Schrödinger equation (1.1),

the scalar product with 〈Φj| leads to the time-evolution of the coefficients

i~
dcj
dt

=
∑
k

ck(t)H
′
jk(t)e

iωjkt (1.4)

with H ′
jk = 〈Φj|Ĥ ′|Φk〉 and ωjk = ωj − ωk. Unfortunately, this general result is un-

solvable and approximations have to be employed. The usual approach is to consider a

two-level system, where only two terms of the summation in (1.4) are left. By absorbing

all diagonal terms of Ĥ ′(t) into Ĥ0, the time-evolution of the coefficients becomes:

i~ċg = ce(t)H
′
ge(t)e

−iωAt (1.5a)

i~ċe = cg(t)H
′
eg(t)e

iωAt (1.5b)

The indices g and e are for ground and excited state respectively and the resonance

frequency is ωA = ωeg . The expected classical dipole operator [22]

Ĥ ′(t) = −e~E(~r, t) · ~r (1.6)

can be evaluated with a plane wave in z-direction: ~E(~r, t) = E0~ε cos(ωLt − kz). Since

the wavelength λl =
2πc
ωL

of the light field is several orders of magnitude larger than the

region containing the wavefunctions |Φn(~r)〉, the electric field ~E(~r, t) can be considered

as constant over the extent of an atom. This is the so-called electric dipole approximation

[24]. Using the Rabi frequency

Ω :=
−eE0~ε

~
〈e|~r|g〉 (1.7)
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1.3. INTERACTION OF ATOMS WITH LIGHT
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Figure 1.3: Rabi oscillations of |ce|2 with frequency Ω′ =
√
Ω2 + δ2 give the

probability for an atom to be in the excited state. The amplitude decreases for
larger detunings whereas the frequency of the oscillations is increasing.

the off-diagonal elements of the interactionHamiltonian becomeH ′
eg(t) = ~Ω cos(ωLt−

kz). Inserting this into (1.5) with H ′
ge(t) = H ′

eg(t)
∗ and z = 0 gives:

i~ċg = ce~Ω∗ cos(ωLt)e
−iωAt =

~Ω∗

2
ce(e

i(ωL−ωA)t + e−i(ωL+ωA)t) (1.8a)

i~ċe = cg~Ω cos(ωLt)e
iωAt =

~Ω
2
cg(e

i(ωL+ωA)t + e−i(ωL−ωA)t) (1.8b)

The time-evolution contains slow oscillating terms with frequency δ := ωL − ωA and

fast oscillating terms with ωL + ωA. The rotating wave approximation can be used here

by neglecting the fast oscillating terms. Then the result reduces to:

i~ċg =
~Ω∗

2
cee

iδt (1.9a)

i~ċe =
~Ω
2
cge

−iδt (1.9b)

The second time derivatives of (1.9) can be inserted into each other. Integration of the

result leads to:

ce(t) = −i
Ω

Ω′ sin(
Ω′

2
t)e−i δ

2
t (1.10)

The effective Rabi frequency is given by Ω′ =
√
Ω2 + δ2. Figure 1.3 shows the probabil-

ity |ce(t)|2 to be in the excited state. The atom undergoes Rabi oscillations at frequency

Ω′ between excited and ground states.
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Figure 1.4: The shifted energy levels due to atom-light interaction are given
by the solid lines and the bare energy levels of an atom plus light field are
given by the dashed lines. The interaction leads to an avoided crossing of the
mixed states at δ = 0 with energy separation of ∆E = ~Ω. Large detunings
|δ| � |Ω| shift the energy from the bare states by ±~Ω2

4δ .

The atom-light interaction further shifts the energy of the system away from the en-

ergy levels {En} of the bare atom. The new time-independent eigenvalues of the total

Hamiltonian can be found by first transforming into a rotating frame with c′g(t) := cg(t)

and c′e(t) := ce(t)e
−iδt. Inserting this into (1.9) gives the interaction Hamiltonian and its

eigenvalues in this frame:

Ĥ ′ =
~
2

 0 Ω

Ω∗ −2δ

 with E± =
~
2
(−δ ∓ Ω′) (1.11)

In presence of an electromagnetic field, the bare eigenstates |e〉 and |g〉 are no longer

the eigenvectors of the system. Figure 1.4 shows the detuning dependent energy shifts

of the coupled system from the bare energy levels. For large detuning |δ| � Ω, the

levels are shifted by ±~Ω2

4δ
and at δ = 0 is an avoided crossing of the energy levels with

separation ∆E = ~|Ω|. The new eigenstates are mixtures of ground and excited states

and are described in the next section with the dressed atom picture.

1.3.2 The Dressed Atom Picture

The Jaynes-Cummings model or Dressed Atom Picture is a different treatment of the

two-level system in which all parts are described quantum mechanically. The total

9



1.3. INTERACTION OF ATOMS WITH LIGHT

Hamiltonian includes a quantum mechanical interaction term and a quantized light

field [25]:

ĤJC = Ĥ0 + Ĥrad + Ĥint = ~ωA|e〉〈e|+ ~ωLâ
†â+

~Ω̃
2
(â†|g〉〈e|+ â|e〉〈g|) (1.12)

Here, Ω̃ is the vacuum Rabi frequency describing the coupling strength, â† and â are the

bosonic creation and annihilation operators defined by

â†|n〉 =
√
n+1|n+1〉 and â|n〉 =

√
n|n−1〉 (1.13)

where |n〉 is the state of the quantized laser field with n photons. Using the product

states |g, n〉 and |e, n−1〉 as basis, the Jaynes-Cummings Hamiltonian for n+1 photons

becomes:

ĤJC = ~

 nωL
Ω̃
2

√
n

Ω̃
2

√
n (n−1)ωL+ωA

 = n~ωL · 12 +
~
2

 0 Ωn

Ωn −2δ

 (1.14)

With the n-photon Rabi frequency Ωn = Ω̃
√
n, the second term in (1.14) resembles the

classical interaction Hamiltonian of (1.11). The eigenenergies are

E±,n = n~ωL ± 1

2
~Ω′

n (1.15)

where Ω′
n =

√
δ2 + Ω2

n. This gives a ladder of eigenenergies separated by ~ωL. The

eigenstates are called Dressed States and are linear combinations of the bare ground and

the excited state. For the special case of δ = 0, they are:

|+〉n =
1√
2
(|g, n〉+ |e, n−1〉) and |−〉n =

1√
2
(|g, n〉 − |e, n−1〉) (1.16)

Figure 1.5 shows a part of the infinite ladder of eigenstates. For the resonant case δ = 0

and no interaction, the energies of |g, n+1〉 and |e, n〉 are degenerated, but coupling to

the light field leads to energy separation of∆E = ~Ω′
n as in the semi-classical approach.

10



CHAPTER 1. FUNDAMENTALS

No Interaction Interaction

Figure 1.5: The Dressed States |+〉n and |−〉n are the eigenstates of an inter-
acting atom-light system with n photons. The eigenenergies are shifted by
∆E = ±1

2~Ω
′
n from the ladder of bare state energy levels that are separated

by ~ωL.

1.3.3 Spontaneous Emission

The description so far has not included effects of spontaneous emissions which can be

explained by the coupling of the atom to the infinite empty vacuum modes of the elec-

tromagnetic field. Using the formalism of Section 1.3.1, the general state of the system

is then [22]:

|Ψ(t)〉 = ce(t)e
−iωet|e, 0〉+

∑
S

cg,1Se
−i(ωg+ωS)t|g, 1S〉 (1.17)

Here, |e, 0〉 is the excited state and |g, 1S〉 are the ground states with one photon in the

field and S = (~k,~ε) denotes the vacuum mode. The vacuum Rabi frequencies ΩS =

− eES

~ 〈e, 0|r|g, 1S〉 describe the coupling of these modes to the excited state. Using (1.17)

in the Schrödinger equation (1.1) leads to the time evolution:

i~ċe(t) =
∑
S

cg,1S(t)~ΩSe
−i(ωS−ωA)t (1.18a)

i~ċg,1S(t) = ce(t)~Ω∗
Se

i(ωS−ωA)t (1.18b)

The excited state is coupled to all vacuum modes but since the ground state is only cou-

pled to a single state, spontaneous absorption is not possible [22]. The sum in (1.18)

can be replaced by an integration over all modes by using the electric field ES =
√

~ωS

2ε0V

11



1.3. INTERACTION OF ATOMS WITH LIGHT

which can be derived from the zero-point energy of a given volume V and the mode den-

sity dn = 2 · V ω2

8π3c3
sin(Θ)dωdΘdΦ. The time integration of the ground state coefficient

(1.18) with these modes gives:

ċe(t) = −γ

2
ce(t) with γ =

ω|〈e, 0|r|g, 1S〉|2

3πε0~c3
(1.19)

Spontaneous emission can therefore be described by a single parameter, the spontaneous

decay rate γ which is related by γ = 1
τ
to the lifetime τ of the excited state.

1.3.4 Optical Bloch Equations

The dynamics of the system in presence of spontaneous emission can be described with

the density matrix ρ whose components are defined by ρjk = 〈Φj|ρ̂|Φk〉, using the den-

sity operator ρ̂ = |Ψ〉〈Ψ|. This leads to:

ρ =

ρgg ρge

ρeg ρee

 =

cgc
∗
g cgc

∗
e

cec
∗
g cec

∗
e

 (1.20)

The time-evolution of the density matrix is given by the Von-Neumann equation:

i~ρ̇ = [Ĥ, ρ] (1.21)

Using the interactionHamiltonian of (1.11) and including spontaneous emission by (1.19)

gives the optical Bloch equations (OBE) [22]:

ρ̇gg = +γρee +
i

2
(Ω∗ρeg − Ωρge) (1.22a)

ρ̇ee = −γρee +
i

2
(Ωρge − Ω∗ρeg) (1.22b)

ρ̇ge = −(
γ

2
+ iδ)ρge +

i

2
Ω∗(ρee − ρgg) (1.22c)

ρ̇eg = −(
γ

2
− iδ)ρeg +

i

2
Ω(ρgg − ρee) (1.22d)

Figure 1.6 shows the numerical integration of ρ̇ee(t) which gives a damped Rabi oscilla-

tion of the excited state probability due to spontaneous emissions. The stationary case

12
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Figure 1.6: The on-resonance probability ρee with Ω = 10γ is calculated by
numerical integration of the optical Bloch equations and is given by the solid
line. Spontaneous emission leads to damping of the Rabi oscillation and the
stationary case gives ρee = 1

2
s0

1+s0
≈ 1

2 for δ = 0 and high saturation s0 � 1

which is represented by the dashed line.

with ρ̇ee = ρ̇eg = 0 can be solved analytically and gives the probabilities

ρeg =
iΩ

2(γ
2
− iδ)(1 + s)

and ρee =
s0

2(1 + s0 + (2δ
γ
)2)

(1.23)

where s = s0
1+( 2δ

γ
)2

is the saturation parameter and s0 = 2|Ω|2
γ2 = I

IS
its on-resonance

value with the saturation intensity IS = πhc
3λ3τ

.

1.3.5 Optical Forces

The interaction of an atomwith photons in a light field leads to forces due to momentum

exchange in absorption and emission processes. Using Ehrenfest's theorem, the expecta-

tion value of the quantummechanical force operator can be described by the interaction

Hamiltonian:

〈F̂ 〉 = d
dt
〈p̂〉 = i

~
〈[Ĥ ′, p̂]〉 = −〈∂Ĥ

′

∂x
〉 (1.24)

As before, only the off-diagonal elements Ĥ ′
ge = Ĥ ′∗

eg are left in the Hamiltonian of (1.6).

With 〈∂Ĥ′

∂x
〉 = Tr(ρ∂Ĥ′

∂x
), the Rabi frequency defined in (1.7) and the density matrix in

13



1.3. INTERACTION OF ATOMS WITH LIGHT

(1.20), the force F on an atom can be expressed by:

〈F̂ 〉 = ~(
∂Ω

∂z
ρ∗eg +

∂Ω∗

∂z
ρeg) (1.25)

A general Rabi frequency of Ω(z) = ωRe
iφ(z) with magnitude ωR and a position depen-

dent phase φ(z) can be used to evaluate (1.25):

〈F̂ 〉 = ~
2
[
∂ωR

∂z
(eiφρ∗eg + e−iφρeg) + i

∂φ

∂z
(ωRe

iφρ∗eg − ωRe
−iφρeg)]

= ~
∂ωR

∂z
Re(eiφρ∗eg) + ~

∂φ

∂z
Im(ωRe

iφρ∗eg)

(1.26)

The two terms in (1.26) can be associated with different types of force which occur for

specific choices of the light field. For the case of a travelling wave with the wave vector

k, the intensity is constant but the phase is changing spatially, so that ∂ωR

∂z
= 0 and

∂φ
∂z

= k. Using the stationary solution of the OBE in (1.23) gives the radiative force [22]:

Frad = ~kIm(ωRe
iφρ∗eg) =

~k|Ω|2γ
4(γ

2

4
+ δ2)(1 + s)

= ~kγρee (1.27)

This result can be interpreted as the momentum transfer ~k at scattering rate γP =

γρee. Since the on-resonance probability ρee =
s0

2(1+s0)
saturates for high intensities, the

radiative force is limited by:

Frad,max =
~kγ
2

(1.28)

A completely different result can be derived with two counter-propagating waves each

with wave number k which form a standing wave. Here, the phase is constant but the

intensity is changing, so that ∂φ
∂z

= 0 and ∂ωR

∂z
= −ωRk tan(kz). This gives the dipole

force [22]:

Fdip = ~
∂ωR

∂z
Re(eiφρ∗eg) =

2~kδs0 sin(2kz)
1 + 4s0 cos2(kz) + (2δ

γ
)2

(1.29)

14



CHAPTER 1. FUNDAMENTALS

In comparison to the radiative force, this is not limited and can be made arbitrary large

at certain positions. However, due to sign reversals on the wavelength scale, the spatial

average of the dipole force vanishes for the simple case of a two-level system.

A non-vanishing average force can be achieved by considering multi-level atoms such

as in Sisyphus cooling or using light fields with more than one frequency. The bichro-

matic force can be seen as a special case of non-vanishing dipole force, where two equal

detuned frequencies are used for rectification.

15



Chapter 2

The Bichromatic Force

Thebichromatic force arises in counter-propagating beams consisting of two frequencies

each detuned by±∆ from the atomic resonance ωA. As mentioned in the previous chap-

ter, it can be considered as a rectification of the dipole force to create a non-vanishing

average force which is, unlike the radiative force, not fundamentally limited by (1.28)

and can be made much larger if certain conditions are fulfilled [26].

2.1 π-Pulse Model

The π-pulse model gives a very intuitive but not accurate description of the bichromatic

force which is often used in previous works [13--15, 22, 27] as a starting point to under-

stand the basic principles.

two-level

atom

pulsed beam pulsed beam

Figure 2.1: In the π-pulse model, the beams are described by discrete intensity
pulses with duration ∆t = π

Ω . Each pulse drives half of a Rabi period and
changes the state of the atom from ground to excited and vice versa. Coherent
sequences of absorption from one side and stimulated emission from the other
side exert a force on the atom, which exceeds the radiative limit, if Ω � γ.

16



CHAPTER 2. THE BICHROMATIC FORCE

A pair of counter-propagating beams is considered as sequence of discrete intensity

pulses as shown in Figure 2.1. The light frequency is on atomic resonance ωA and the

pulse duration is ∆t = π
Ω
, where Ω is the Rabi frequency. In this configuration, each

pulse will drive the atom by half a Rabi period changing the state from ground to ex-

cited and vice versa. If the relative phase difference of the beams is ∆φ = π, the pulses

arrive alternately from both sides. Absorption from one direction followed by stimu-

lated emission to the other direction acts as a force on the atom which transfers twice

the recoil momentum ∆p = 2~k per cycle.

Figure 2.2: (a)The discrete π-pulses are driving the Rabi oscillation alternately
from both directions. A momentum of ∆p = 2~k is coherently transferred
per cycle. (b) The beating of two frequencies is used instead of π-pulses. The
same momentum transfer rate can be achieved, if beat overlaps are neglected.
(c) Spontaneous emissions destroy the coherence, the force even changes
signs so that the average vanishes.

This prodecure of coherent momentum transfer is shown in Figure 2.2a. It can exceed

17



2.1. π-PULSE MODEL

the limit of the radiative force if 1
∆t

� γ, where γ is the spontaneous decay rate of the

excited state, usually in the range of several MHz.

In the scope this work the beating of two frequencies ωA ±∆ is used as a sinusoidally

modulated beam to take the role of the pulse trains, which are difficult to create other-

wise. Using this configuration, the total electric field in each beam is [27]:

Etot(z, t) = E+∆(z, t) + E−∆(z, t)

= E0 cos
[
(k +

∆

c
)z − (ωA +∆)t

]
+ E0 cos

[
(k − ∆

c
)z − (ωA −∆)t

]
= 2E0 cos(kz − ωAt) cos(∆ · t− ∆

c
z)

(2.1)

Here, E0 is the amplitude of each single electric field and k = 2π
λ
= ωA

c
is the wave vec-

tor. This describes a travelling wave at carrier frequency ωA with amplitude modulation

at beat frequency ∆.

Figure 2.2b shows the alternating intensity beats with ∆φ = π. In this case, the du-

ration of the beats is ∆t = π
∆
. Using the definition of the Rabi frequency (1.7), where

Ω ∝ E0, the π-pulse condition is [28]:

∫ + π
2∆

− π
2∆

2Ω cos(∆ · t)dt = π → Ωπ =
π

4
∆ (2.2)

Since the Rabi frequency Ω is connected to the intensity by the saturation parameter s0

in (1.23), it can be chosen to fulfill the π-pulse condition (2.2) for a given detuning ∆.

The bichromatic force can be calculated by the momentum transfer per time, if overlap-

ping of counter-propagating beats are neglected. For ∆ � γ, it exceeds the radiative

force for certain choices of the relative phase difference:

FBC,ideal =
∆p

∆t
=

2~k∆
π

� ~kγ
2

= Frad,max (2.3)
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CHAPTER 2. THE BICHROMATIC FORCE

The description so far has not included spontaneous emission, which occurs due to the

finite lifetime of the excited state. As shown in Figure 2.2c, random spontaneous emis-

sion events destroy the coherence of the system and the force will eventually change

direction on the time scale of the decay rate γ. The average force vanishes for antisym-

metric beat arrivals from both sides with relative phase difference ∆φ = π.

An asymmetric choice of the relative phase difference can achieve a non-vanishing force,

but will increase the overlap of the counter-propagating beams. In the scope of the

π-pulse model, asymmetric pulses give the atom less time in the excited state and even if

a spontaneous emission occurs, there is more time to correct the direction of momentum

transfer. The optimum phase difference for high asymmetry and short beat overlap is

∆φ = π
2
, which is derived in the next chapter with the Doubly Dressed Atom model.

With this choice, the atom is three times longer in the right cycle [27]. The force is

therefore half of the ideal force in (2.3):

FBC =
FBC,ideal

2
=

~k∆
π

(2.4)

The π-pulse model provides good insight and even some numbers on the bichromatic

force, but neglects simultaneous pulses from both directions. Since it considers each

beam independently, the π-pulse condition in (2.2) can not be accurate. For better cal-

culations, the Doubly Dressed State model is presented in the next section.

2.2 Doubly Dressed Atom Model

The description of the bichromatic force using dressed states was first proposed in [29]

and includes the light field and interaction terms in the total Hamiltonian to get the

time-independent eigenenergies of the system. In contrast to the π-pulse model, the

same two counter-propagating frequencies ωA ±∆ are paired together to a blue and a

red detuned standing wave. The bare atom state is |g〉 or |e〉 and the light field with b

blue photons and r red photons is denoted by |b, r〉. Without coupling, the undressed

product states are [30]:
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2.2. DOUBLY DRESSED ATOM MODEL

|g, b, r〉 = |g〉 ⊗ |b, r〉 with Eg,b,r = b · ~(ωA +∆) + r · ~(ωA −∆)

= (b+ r) · ~ωA + (b− r) · ~∆

and

|e, b, r〉 = |e〉 ⊗ |b, r〉 with Ee,b,r = ~ωA + b · ~(ωA +∆) + r · ~(ωA −∆)

= (b+ r + 1) · ~ωA + (b− r) · ~∆

(2.5)

The product state energies are separated by Ee,b,r − Eg,b,r = ~ωA and each of them is

an infinite manifold of states separated by∆Eg,b,r = 2~∆ as shown in Figure 2.3. Since

the excited energy levels with b+ r = N photons are between the ground energy levels

with b+ r = N + 1 photons, the distance of two uncoupled energy levels is∆E = ~∆.

In this model, the bichromatic light field can be coherently redistributed by the atom.

For absorption of a red detuned photon with Er = ~(ωA − ∆) and stimulated emis-

sion of a blue detuned photon Eb = ~(ωA + ∆), the light field gains an energy of

Eb − Er = 2~∆ = 2∆E and the atom loses this amount of kinetic energy, resulting

in a force. Changing the role of red and blue detuned photons will reverse the sign of

the force, since the atom will gain energy in this case.

The Hamiltonian ĤNC of the uncoupled system is simply the sum of the atomic Hamil-

tonian Ĥ0 = ~ωA|e〉〈e| in (1.12) and the Hamiltonians of both light fields with different

frequencies Ĥrad = Ĥb+Ĥr = ~(ωA+∆)â†bâb+~(ωA−∆)â†râr. In analogy to (1.13), â†i
and âi are the photon creation and annihilation operators acting on |b, r〉 and the index

i = b, r denotes the detuning of the photon.

The interaction term can be added similarly to the Jaynes-Cummings model in (1.12) by

introducing coupling parameters Ωb to the blue and Ωr to the red standing wave. Like

the energy levels, it is infinite due to different total photon numbers. Truncation to the
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CHAPTER 2. THE BICHROMATIC FORCE

b+r = N photons

b+r = N+1 photons

b+r = N-1 photons

b+r = N photons

Figure 2.3: The uncoupled product states |g, b, r〉 and |e, b, r〉 with different
photon distributions. Their energy levels form a ladder of states each sep-
arated by ∆E = ~∆. The manifolds with a different total photon number
are separated by the atomic resonance ~ωA. Due to the detuning, the energy
levels are not degenerated as in Figure 1.5.

three-dimensional basis {|e, b− 1, r〉, |g, b, r〉, |e, b, r − 1〉} leads to:

Ĥint =
~Ω̃b

2

(
â†b|g, b, r〉〈e, b, r|+ âb|e, b, r〉〈g, b, r|

)
+

~Ω̃r

2

(
â†b|g, b, r〉〈e, b, r|+ âb|e, b, r〉〈g, b, r|

) (2.6)

The coupling parameters Ωb,r are given by the light field configuration. By re-grouping

same frequency terms, the electric fields in (2.1) yield the standing waves [27]:

E = 2E0 cos(kz +
∆φ

4
) cos([ωA +∆]t) + 2E0 cos(kz −

∆φ

4
) cos([ωA −∆]t) (2.7)
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2.2. DOUBLY DRESSED ATOM MODEL

Here, ∆φ is the relative phase difference of the electric fields. With this, the position-

dependent coupling parameters are [27]:

Ωb,r(z) = 2Ω cos(kz ± ∆φ

4
) (2.8)

In this case, the total Hamiltonian is also position-dependent and can bewritten inmatrix

form using the non-coupled states as basis. Truncated to 7× 7 for simplicity, it is then:

Ĥtot = (b+ r)~ωA · 17 + ~



3∆ Ωr

2
0 0 0 0 0

Ωr

2
2∆ Ωb

2
0 0 0 0

0 Ωb

2
∆ Ωr

2
0 0 0

0 0 Ωr

2
0 Ωb

2
0 0

0 0 0 Ωb

2
−∆ Ωr

2
0

0 0 0 0 Ωr

2
−2∆ Ωb

2

0 0 0 0 0 Ωb

2
−3∆


(2.9)

The second term of this Hamiltonian is the interaction term [30] and the matrix can be

diagonalized. The position-dependent eigenvalues are the energy levels of the coupled

system.

Figure 2.4 shows the energy levels and the intensity of the standing waves for different

positions with ∆φ = π and Rabi frequency Ω = π
4
∆. Avoided crossings of two lev-

els occur at certain positions, but an atom moving with non-zero velocity v can make

Landau-Zener transitions through them [31]. The probability for this process is:

PLZ = exp
(
−πU2

~v∇E

)
(2.10)

Here, U is the energy difference between two levels and∇E the gradient of the energy.

The probability for a Landau-Zener transition therefore gets higher for smaller gaps and

larger slopes. PLZ ≈ 1 at the avoided crossings and the atom will tunnel nearly every

time, losing kinetic energy in this process by climbing up or gaining kinetic energy by
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Figure 2.4: The diagram shows the energy levels of the dressed states for Rabi
frequency Ω = π

4∆ and relative phase difference ∆φ = π of the standing
waves. In thismodel, amoving atom canmake Landau-Zener transitionswith
the probability given in (2.10), which are most likely at the avoided crossing.
The atom climbs the infinite ladder of dressed states and loses kinetic energy
due to this coherent process.

falling down the infinite ladder of dressed states.

In this model, spontaneous emissions are dissipative losses of the light field energy and

will change the sign of the slope. For a symmetric phase difference of ∆φ = π, the

time and spatial average of the force is zero as in the π-pulse model. Again, a different

choice of relative phase leads to a non-vanishing force. The energy gaps between two

levels vary with change of the relative phase difference and another minimum occurs

at ∆φ = π
2
. This has also been used as the optimum phase in the π-pulse model of the

previous section.

Figure 2.5 shows the dressed states with relative phase difference ∆φ = π
2
. In contrast

to the π-pulse model, the energy gaps at nodes of one of the standing waves are minimal
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Figure 2.5: The energy levels of the dressed states for a relative phase differ-
ence ∆φ = π

2 , where the energy gaps between two levels have another min-
imum. In contrast to Ω = π

4∆ of the π-pulse model, the smallest gap can be
achieved with Ω =

√
3
2∆.

for a Rabi frequency of Ω =
√

3
2
∆. Spontaneous emissions will occur more likely in the

levels that have a larger admixture of the excited state, so that depending on the sign of

the relative phase, an upward or downward path through the ladder of dressed states is

preferred on average.

The dressed states with the largest mixture of the uncoupled excited states are shown as

bold lines in Figure 2.6. Due to the asymmetric phase difference of the standing waves,
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Figure 2.6: The bold energy levels have larger mixture with the uncoupled
excited states, which are shown by the dashed lines. Spontaneous emission
occurs more likely in these states, so that in this case, the atom will follow an
upward path on average. A sign reversal in the relative phase difference of
the standing waves will prefer a mean downward path.

the atom will lose its kinetic energy in 75% of the time and gain kinetic energy in 25%

of the time, resulting in an average force [30]:

FBC,DDA =
3

4
|∆E

∆z
| − 1

4
|∆E

∆z
| = ~k∆

π
(2.11)

Here, the detuning∆ is the same as shown in Figures 2.4 - 2.6. This gives the same force

as in the π-pulse model, but with a larger optimal Rabi frequency Ω =
√

3
2
∆ ≈ 1.6 ·Ωπ .

A more detailed analytical solution on the optimal Rabi frequency and relative phase

difference is provided in [30], where the use of a Floquet Hamiltonian removes the time-

dependence of the system. The lower and upper bounds of the velocity range can be

explained qualitatively by the Dressed State model, since a minimal velocity is necessary

for the atom to move through the states. If velocities are too large, additional Landau-
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2.3. NUMERICAL CALCULATIONS

Zener transitions can occur whichwill decrease the average force. However, in the scope

of this work, the velocity range of the bichromatic force is calculated with the numerical

calculation using optical Bloch equations that is presented in the next section.

2.3 Numerical Calculations

The presented models give good understanding on the nature of the bichromatic force,

but an exact numerical solution using optical Bloch equations provides far more details,

which are needed for experiments.

The optical Bloch equations (1.22) have only three independent parameters, if the overall

phase is ignored. These can be expressed by the Bloch vector ~R = (r1, r2, r3), whose

components are defined as [22]:

r1 = cgc
∗
e = ρgee

−iωt + ρege
iωt (2.12a)

r2 = i(cgc
∗
e − c∗gce) = i(ρgee

−iωt − ρege
iωt) (2.12b)

r3 = |ce|2 − |cg|2 = ρee − ρgg (2.12c)

The four components of the density matrix ρ defined in (1.20) can be expressed by the

components of the Bloch vector ~R:

ρgg =
1

2
(1 + r3) (2.13a)

ρge =
1

2
(r1 − ir2)e

iωt (2.13b)

ρee = 1− ρgg (2.13c)

ρeg = ρ∗ge (2.13d)

Inserting this into the optical Bloch equations (1.22) gives the equation of motion for the

Bloch vector. When the electric field configuration (2.7) and the definition of the Rabi

frequency (1.7) are used, the coupled differential equations for the components of the
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Bloch vector are [27, 32]:

ṙ1 = −∆r2 −
γ

2
r1 − 4Ωr3 sin(kvt) sin(

∆φ

4
) sin(∆t) (2.14a)

ṙ2 = −∆r1 −
γ

2
r2 + 4Ωr3 cos(kvt) cos(

∆φ

4
) cos(∆t) (2.14b)

ṙ3 = γ(1− r3)+4Ω[r1 sin(kvt) sin(
∆φ

4
) sin(∆t)− r2 cos(kvt) cos(

∆φ

4
) cos(∆t)]

(2.14c)

Here, γ is the spontaneous decay rate, ∆ the detuning of the frequencies and ∆φ the

relative phase difference of the standing waves. A velocity dependence is included by

the position of the atom due to the substitution z = vt. The force for a given velocity v

can be calculated as in (1.25) and is found to be [27, 32]:

F = 2~kΩ
[
−r1 sin(kvt) cos(

∆φ

4
) cos(∆t) + r2 cos(kvt) sin(

∆φ

4
) sin(∆t)

]
(2.15)

The components r1 and r2 of the Bloch vector can be calculated numerically from (2.14), if

the parameters γ,∆, Ω,∆φ and the velocity v are given. In this work, ode23 is used [33].
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Figure 2.7: The force profiles dependent on the detuning of the atomic reso-
nance calculated with the optical Bloch equations. Here, the parameters for
40Ar, γ = 2π · 5.87MHz,∆ = 2π · 65MHz≈ 11γ and Ω =

√
3
2∆ ≈ 14γ are

used. The sharp resonances corresponds to Doppleron resonances [34] and
ordinary optical molasses can be seen at | ± kv| = ∆.
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Figure 2.8: The numerically calculated force profiles on the left side with∆ =

2π ·65MHz, γ = 2π ·5.87MHz and different Rabi frequenciesΩ. The dressed
states with the same parameters are on the right side. In the scope of the
Dressed State model, non-optimal Rabi frequencies Ω 6=

√
3
2∆ ≈ 14γ result

in too large energy gaps or additional gaps for Ω � 14γ where undesired
Landau-Zener transitions occur.
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Figure 2.7 shows the calculated velocity-dependent force profile with γ = 2π ·5.87MHz

for the 1s5 → 2p9 transition of 40Ar, ∆ = 2π · 65 MHz≈ 11γ, and a Rabi frequency

Ω =
√

3
2
∆ ≈ 14γ, which are parameters that can be achieved with the experimental

setup. The profile shows resonances at certain detunings, which can be explained by

Doppleron resonances [34]. Ordinary optical molasses can be seen at Doppler shifts

| ± kv| = ∆ = 2π · 65 Mhz, since the detuned atom is on-resonance with the single

frequencies ωA +∆ from one side and ωA −∆ from the other side.

The numerical calculated maximal force FBC,num ≈ 5.5Frad,max is smaller than the ideal

force FBC,DDA = ~k∆
π

= 2
π
∆
γ
Frad,max ≈ 7Frad,max calculated by the Dressed State

model with the same parameters as above. The difference can be explained by addi-

tional Landau-Zener transitions through the dressed states, which always have a non-

zero probability and are not taken into account in the force calculation of the dressed

states in (2.11).

Figure 2.8 compares the calculated force profiles with the same detuning∆ and sponta-

neous decay rate γ, but different Rabi frequenciesΩ to the dressed states calculated with

the same parameters. A lower force with non-optimal Rabi frequencyΩ 6= Ωopt =
√

3
2
∆

can be explained in the scope of the Dressed State model by large energy gaps which

hinder Landau-Zener transitions for too small Rabi frequencies or undesired Landau-

Zener transitions at additional gaps, if the Rabi frequency is too high.

Figure 2.9 shows the calculated phase dependence of the on-resonance bichromatic force

with Rabi frequency Ω =
√

3
2
∆ ≈ 14γ. The absolute value of the force is maximal for

relative phase differences∆φ = ±π
2
= ±90◦. In the case of symmetric or antisymmetric

phase differences ∆φ = nπ where n is an integer value, the force vanishes as expected

from the π-pulse model and the Doubly Dressed Atom model.

The numerical calculation by solving the optical Bloch equations gives the most accu-

rate numbers on the bichromatic force, but it makes certain idealized assumptions. The

Rabi frequency Ω of the light field is not spatially constant in real experimental setups
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Figure 2.9: The phase dependence of the bichromatic force with optimal Rabi
frequency Ω =

√
3
2∆ ≈ 14γ. As expected, the absolute value of the force is

largest at ∆φ = ±π
2 = ±90◦ and is zero in the symmetric or antisymmetric

case.

due to the Gaussian intensity distribution of the laser beams so that real measured force

profiles will be different from the presented calculated ones.

The next section providesmodified calculations considering the changing Rabi frequency

for atoms travelling perpendicular to the beam direction. These calculations will be used

for comparison of theory and experiment instead of the basic calculations of this chapter.

2.4 Corrections for Gaussian Laser Beams

The idealized light fields of the previous chapters can not be achieved in the experimental

setup due to the wave property of light that has to be taken into account. The complex

electric field ~U has to fulfill the Helmholtz equation [35]:

∇2~U + k2~U = 0 (2.16)
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CHAPTER 2. THE BICHROMATIC FORCE

Here, k = 2π
λ

= ω
c
is the wave vector. The equation (2.16) can be solved by simple

monochromatic planar or spherical waves. Although the plane wave with ~U = ~U0e
−ikz

has a constant mean intensity, it is not possible in practice due to the confined space of

real laser beams. A general non-radial symmetric solution of the Helmholtz equation is

given by Hermite-Gaussian modes [35] that can be used to describe the output of laser

cavities with different horizontal and vertical geometries. The symmetric zeroth order

of these modes is called Gaussian beam and is given by:

U(ρ, z) = U0
w0

w(z)
exp(

−ρ2

w(z)2
)exp(−ikz − ik

ρ2

2R(z)
+ iζ(z)) (2.17)

Here, w0 is the beam waist, w(z) = w0

√
1 + ( z

zR
)2 is the radius of the beam at position

z with Rayleigh range zR =
πw2

0

λ
, R(z) = z[1+ ( z0

z
)2] is the curvature of the wavefronts,

ζ(z) = tan−1( z
z0
) is the additional Gouy phase and ρ =

√
x2 + y2 is the axial distance.

Figure 2.10: Schematic diagram of a Gaussian beam in the ρz-plane, with the
distance ρ =

√
x2 + y2 to the z-axis, the position-dependent beam radius

w(z), beam waist w0 = w(0) and Rayleigh range zR, where the surface of
the beam cross section is doubled. The radius of the wave front curvature is
given by R(z) = z[1 + ( z0z )

2]

Figure 2.10 shows a schematic diagram of a Gaussian beamwith the relevant parameters.

Near the light source, z � zR and the curvature isR → ∞ so the wavefronts are nearly

planar and for long distances z � zR, they are spherical with R → 1 . The intensity at
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position ρ and z is given by:

I(ρ, z) = |U(ρ, z)|2 = I0(
w0

w(z)
)2exp(− 2ρ2

w(z)2
) ≈ I0exp(−

2ρ2

w0

) (2.18)

The approximation in the last part of the equation can be made, since z � zR in the

experimental setup of this work and the collimated beam radius can be seen as constant.

The upper graph in Figure 2.11 shows the intensity distribution in the xy-plane for a

Gaussian laser beam in the z-direction. The lower graph shows the intensity for an

atom travelling in x-direction perpendicular to the beam with two different values of y,

one through the center of the beam and the other half a beam radius w0 away from the

center. The difference in the intensity is significant and this also has to be considered in

further force calculations.

Discretization of the intensity profile has to be made for solving the optical Bloch equa-

tions. For simplicity, the intensity profile is rounded to 10% steps as shown by the dis-

crete lines in Figure 2.11 and the Rabi frequency can be calculated by (1.23).

For an atom travelling with constant longitudinal velocity vlong through a laser beam in

transverse direction with diameter d = 2w0, the total perpendicular force

Fz,tot = m
∑
n

atrans,n =
mvlong

d

∑
n

vtrans,n =
mvlong
2w0

vtrans,tot (2.19)

is proportional to the total change of velocity vtrans,tot in transverse direction. With a

beam intensity I0 = 3IS(
∆
γ
)2 where ∆ = 2π · 65 MHz and γ = 2π · 5.87 MHz as in

the previous chapter, the velocity shifts can be calculated using the bichromatic force

profiles from the optical Bloch equation.
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Figure 2.11: The upper figure shows the profile of a Gaussian beam at z = 0.
The beam waist is w0 and defines the distance to the axis where the intensity
is reduced to I(w0) =

1
e2
I0. The intensities at two cross-sections with x = 0

and x = w0
2 is shown in the lower picture. For simplicity, the discrete lines

with 10% intensity steps can be used for the Rabi frequencies in the optical
Bloch equations.
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Figure 2.12: On the left side are the bichromatic forces and resulting veloc-
ity changes for an atom travelling perpendicular to the beams with constant
vlong . The same intensity distribution is used for the radiative force and ve-
locity change on the right side. The diagrams are normalized to the maximal
radiative force or maximal radiative velocity change through the beam center.

Figure 2.12 shows the perpendicular forces on an atom travelling through the interac-

tion region of the laser beams and the resulting velocity change. The bichromatic force

for non-optimal Rabi frequencies due to the different intensities is significantly smaller

whereas the radiative force is nearly saturated on the whole beam cross section.

The optical power P is easier to handle experimentally than the intensity and is con-

nected to the latter by:

P =

∫
A

I(ρ, z)dA (2.20)

Using A = πw2
0 as integration surface, the optical power can be chosen to maximize the

total force (2.19).
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Figure 2.13: The bichromatic force for the same detuning ∆ but different
power values calculated with the optical Bloch equations using the Gaussian
beam corrections presented in this chapter. The lines show two paths of the
atom with distances x = 0 and x = w0

2 from the laser beam center. The mean
force is saturating for higher power in contrast to the optimal power of the
non-corrected models.

Figure 2.13 shows the total on-resonance bichromatic force on an atom travelling per-

pendicular through the laser beams for two distances from the beam axis and different

values of the optical power. For a laser beam with the same cross section, but a constant

intensity, the Dressed State model gives a power optimum of P = IA = 3ISπw2
0
∆2

γ2 . The

maximal force considering Gaussian beams is at larger power values, since the optimal

Rabi frequency can not be achieved everywhere.

The corrections have not considered Doppler shifting of the atomic resonance by recoil

of photons due to stimulated emission. The angle of the atomic path to the laser beams

will also change, so that the longitudinal velocity vlong has an influence on the Doppler

shift, especially for misalignments.

Figure 2.14 shows the bichromatic force profile with w0 = 1 mm, P = 50 mW, γ =

2π ·5.87MHz,∆ = 2π ·65MHz and a longitudinal velocity vlong = 274m
s
. Including the

corrections mentioned above, the force is significantly smaller than the idealized calcu-

lations of the previous sections. In contrast to the radiative force, the bichromatic force
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Figure 2.14: The bichromatic force profile calculated with the optical Bloch
equations and corrected with Gaussian beams is shown as bold curve. The
parameters are w0 = 1 mm, P = 50 mW, γ = 2π · 5.87 MHz, ∆ = 2π · 65
MHz and a longitudinal velocity vlong = 274m

s . The non-corrected force
profile from the previos chapter is shows as thin curve.

is not limited fundamentally and larger forces can be achieved with higher detunings∆,

if enough laser power is available. In the scope of this work, a maximum power of 50

mW is used.

Figure 2.15 shows the phase dependence of the bichromatic force calculated with the

basic theory of the last section and compared to the theoretical curve acquired with the

corrections mentioned in this section. A power of P = 50 mW is used for the corrected

theoretical curve. As expected, the force is lower due to the changing Rabi frequency of

a Gaussian laser beam. Additionally, the phase dependence is broader than in the basic

calculations.

For the comparison of theory and experiment, the basic theoretical calculations of the

last section have to be corrected with the Gaussian beam profile since this leads to very
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Figure 2.15: The phase dependences of the bichromatic force with optimal
Rabi frequency compared to the calculations with P = 50 mW using Gaus-
sian beam profile corrections. As expected from the previous calculations, the
maximal force is significantly smaller. Additionally, the phase dependence is
broader than in the basic calculations.

different results. In the scope of this work, all further used theoretical curves are includ-

ing the corrections that have been described in this chapter.
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Chapter 3

Experimental Setup

The experimental setup for creating and measuring the bichromatic force on 40Ar atoms

is presented in this chapter. The optical frequency generation with subsequent amplifi-

cation is described in the first two sections. The last section shows the setup for the inter-

action of these frequencies with a collimated beam of metastable argon and describes the

measuring method of the bichromatic force in this work. The ATTA-apparatus used in

the scope of this work is only briefly mentioned since it is well documented in previous

publications of the work group [5, 16, 18--21].

3.1 Four-Frequency Generation

In the simple case of atoms with zero velocity, the bichromatic force needs two counter-

propagating beams each with frequencies detuned by±∆ from resonance ωA. For atoms

moving with a velocity vtrans in beam direction, the frequencies have to be corrected

with the Doppler shift νD = −kvtrans to be on atomic resonance again. Therefore, the

general four frequencies required for bichromatic forces are:

νBCF =

ωA + kvtrans ±∆ for 1st beam

ωA − kvtrans ±∆ for 2nd beam
(3.1)

In each of the models presented in the last chapter, a defined relative phase difference

of the frequencies is necessary. Changing the phase of the beat nodes will change the
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phase of the beating in the π-pulse model or the phase difference of the standing waves

in the Dressed State model.
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Figure 3.1: Schematic diagram of the optical setup for generation of the nec-
essary frequencies, given in units of MHz in relation to the atomic resonance
ω0. The incoming light has a detuning of −420Mhz and is shifted upward to
−∆±kv with the top and the bottom AOM.The two AOM's in the middle are
driven by synchronized frequency generators such that a relative phase shift
can be adjusted. The zeroth order and doubly passed first order are added
together to the resulting four frequencies νBCF = ωA ± kvtrans ±∆.

Figure 3.1 shows a schematic diagram of the setup that generates the required four fre-

quencies that are required. The incoming light from the main experiment is detuned

by −420 MHz from atomic resonance ωA due to the given optical setup [20]. The top

and bottom doubly passed Acousto-Optical Modulators (AOM) shift the frequencies to

−∆±kv. In the scope of this work, the force is acting on a collimated beam ofmetastable

argon atoms [19], so that vtrans has a narrow velocity distribution∼ ±10m
s around zero.

Therefore, the lowest AOM was not present in earlier stages of this experiment and was

added for measurements on the detuned force profiles with kv 6= 0.
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The second frequency component is added to the two Doppler shifted beams by the

AOM's in the middle of Figure 3.1, which are driven by synchronized Agilent 33250A

frequency generators with acoustic frequency ∆. The light through these AOM's is dis-

tributed equally into the zeroth and first order, so that the four frequencies νBCF of (3.1)

are generated by double passing as shown in [36]. The relative phase of the acoustic

waves ∆φAOM can be adjusted with the function generator. This setup will directly

change the relative phase ∆φ between the zeroth order (ωA − ∆) and the first order

(ωA+∆) of the optical frequencies. A schematic diagram of the relation between acous-

tic and optical phase is shown in Figure 3.2 for two different acoustic phases.

Figure 3.2: Schematic diagram of relation between relative acoustic phase
∆φAOM and the relative optical phase∆φ. Here, the horizontal lines are one
node of the acoustic density lattice for two different acoustic phases. The light
passing through the AOM will gain the same amount of relative phase.

The optical phase will be changed by twice the acoustic phase since the light is passing

the AOM two times in this configuration. The zeroth order and the twice diffracted first

order beams of each AOM path are coupled into the same optical fiber.

Figure 3.3 shows a measurement of the output signal of the two fibers containing the

two frequencies ωA±∆ from each path. The phase of these beatings have been adjusted

with the phase of the frequencies driving the AOM. The ratio of zeroth and first order

beams passing the synchronized AOM's can be quantified with the visibility:

νvis =
Pmax − Pmin

Pmax + Pmin

(3.2)
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Figure 3.3: The measured output signal of the fibers containing two frequen-
ciesωA±∆. The phase relation of both signals is constant and can be adjusted
due to the synchronized AOM's. The ratio of zeroth and first order beam can
be optimized for maximum visibility νvis =

Pmax−Pmin
Pmax+Pmin

.

An ideal beating of two frequencies with the same power leads to the visibility νvis = 1.

This is almost the case as can be seen in Figure 3.3. The next section describes the am-

plification of this signal to achieve the necessary power for the bichromatic force.

An alternative approach to generate the four frequencies is to consider the other diffrac-

tion orders. For kv = ∆, a single AOM can provide all frequencies needed for the

bichromatic force as shown in [27]. However, these setups require an optical delay line

for adjusting the phase. In the scope of this work, the presented solution with two syn-

chronized AOM's is preferred due to its flexibility and instant phase adjustment.

3.2 Tapered Amplifier for Strong Pulse Trains

A strong bichromatic force requires intensities that are much larger than in the case of

the radiative force. For a certain detuning ∆, the intensity can be directly calculated

from the Rabi frequency condition using the relations given in (1.23):

IBC = 2IS
Ω2

γ2
= 3IS

∆2

γ2
(3.3)

Here, IS is the saturation intensity and γ the spontaneous decay rate. The necessary

power PBC = IBC · πw2
0 is dependent on the beam radius w0. In the scope of this work,
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3.2. TAPERED AMPLIFIER FOR STRONG PULSE TRAINS

it is in the order of tens of milliwatt up to a few hundred milliwatt. Since a Gaussian

beam has to be considered, the required intensity can be even higher than in (3.3).

The two beams with frequencies ωA±kv±∆ described in the last section are each cou-

pled into a tapered amplifier (TA). These seed frequencies are amplified in the TA diode

due to stimulated emission which was studied in [36] prior to this work. In contrast to

ordinary laser diodes, the surfaces of the TA diode are not reflecting and no resonator

is formed inside. Therefore, it can be operated with higher currents without permanent

damage to the diode. This leads to a large gain of the seed signal.

λ/2

F
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r
a
d

a
y

Is
o
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to
r

Tapered Amplifier

ATTASynchronized AOM

aspheric aspheric cylindric

TA diode λ/2

Figure 3.4: Schematic diagram of a tapered amplifier. The fiber docked seed
beam is focusedwith an aspheric lens onto the small facet of the TA diode. The
position and angle of the seed can be adjusted with the coupler and themirror.
The aspheric and cylindrical lens behind the diode correct the two axes, so that
a collimated beam is formed. An optical isolator prevents retro-reflections
from subsequent optics.

Figure 3.4 shows a schematic diagram of the TA used in the experimental setup. They

were built and documented in [36, 37] and have been recollimated in the scope of this

work. The optics correct asymmetry of the two axes due to the geometry of the TA

diode so that a circular and collimated beam leaves the device. An optical isolator pre-

vents retro-reflections from subsequent optics. The amplified frequencies are coupled

again into a fiber which leads to the ATTA apparatus.

Figure 3.5 shows the measured output of the fiber behind one of the tapered amplifier

for two different powers. The signal for a mean output power of 50mW is still good, al-
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Figure 3.5: Measured amplified output signal in the fiber behind the tapered
amplifier. The solid curve is a beating with 50 mW mean power and has a
slightly worse visibility than the seed signal due to non-perfect beating and
amplified spontaneous emission coupled into the fiber. Increasing the current
of the TA diode leads to higher power, but non-linear gain effects occur.

though the visibility is decreased due to non-perfect beating and amplified spontaneous

emission coupled into the fiber. For higher power, some non-linear effects occur and

the output beating gets worse. This seems to be an individual effect of the different TA

diodes, as each of them behaves differently. In the scope of this work, a maximum mean

power of 50 mW has not been exceeded.

3.3 Interaction Zone and Detection of the Deflected

Atom Beam

The amplified four frequencies of the last section are guided to the ATTA apparatus

[16] through two optical fibers. The apparatus gives access to a collimated beam of

metastable argon atoms and only few modifications had been necessary to implement

the measurement of the transverse bichromatic force.

Figure 3.6 shows a schematic diagram of the experimental setup to deflect the argon

beam with the bichromatic force. Documentations on the metastable argon source and

transverse collimator can be found in [16], so they are not described further in this work.

Modifications on theMagneto-Optical Lens [5] have beenmade to implement the bichro-

matic laser beams at its position, since it provides good optical access to the atom beam.

43



3.3. INTERACTION ZONE AND DETECTION OF THE DEFLECTED ATOM BEAM

Ar

λ/4

λ/4

P
D

Ar*Ar*

Metastable 

Argon Source
Collimator

Iris

Bichromatic

Beams

4
0
A

r
 s

p
e
c
tr

o
s
c
o
p

y

Ar*

Figure 3.6: Schematic diagram showing the parts of the apparatus used for the
measurement of the transverse bichromatic force. The beam is generated with
themetastable argon source and collimator and is deflected in the bichromatic
interaction region. There, the bichromatic beams are overlapped with the
center of the atom beam by the coupler and the mirror. The power has been
stabilized by photodiodes behind the mirrors that are not shown here. The
deflected argon beam has a transverse detuning that can be detected by an
absorption spectroscopy.

The used 1s5(J = 2) → 2p9(J = 3) transition of 40Ar, where the states are given in

Paschen-Notation, has different magnetic substatesmJ as shown in Figure 1.2. The light

of the counter-propagating beams is circularly polarized with the quarter-wave plates

to be either σ+-σ+ or σ−-σ− with respect to the atoms. This optically pumps the atoms

to the stretched states, so that a two-level system can be obtained.

The laser beams can be overlapped with the couplers and the mirrors shown in Figure

3.6. This has to be adjusted while maintaining superposition with the atom beam at the

same time. A good overlap of the two light beams is achieved, when one beam is cou-

pled back into the fiber of the other beam. The optical isolator in front of the tapered

amplifier absorbs the retro reflected power. The power of the bichromatic beams has

been stabilized by photodiodes behind the mirrors.
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The measurement of the bichromatic force is done with an absorption spectroscopy,

which is generated by the modulation of the offset-lock frequency of the repumper

laser [20] from the existing 39Ar laser system. This provides easy access to an abso-

lute frequency scale. The force deflects the atom beam which gains a transverse velocity

vtrans, so that the spectroscopy signal is Doppler detuned by:

νD = −kvtrans = −katranst = −k
F̄z

m

d

vlong
(3.4)

Here, d is the diameter of the beams and vlong the longitudinal velocity of the atoms. For

the first adjustments of the bichromatic beams and superposition with the atoms, the

atom beam imaging tool [21] was used and an iris was necessary to have a good signal

for optimization. The final measurements were taken with the absorption spectroscopy,

where the iris has been redundant.
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Chapter 4

Measurements of the Bichromatic

Force

The bichromatic force on metastable 40Ar has been demonstrated and characterized in

the scope of this work by measurements on a collimated atom beam and the results are

presented in this chapter. The first part shows qualitative measurements with the atom

beam imaging tool [21] which has been very useful for overlapping the laser beams

with the atom beam. Quantitative results have been achieved by measurements with an

absorption spectroscopy and they are presented in the rest of this chapter.

4.1 Atom Beam Imaging

The atom beam imaging was set up in [21] and has a great value as adjusting and control

tool of the ATTA experiment since then. It was used in the early stages of this work for

a first signal of the bichromatic force.

The collimated atom beam has a diameter of approximately two centimeters, but since

the Schaefter+Kirchhoff 60FC-4-A11-02 coupler used for the laser beams have a diameter

of 1.97 mm, a large cross section of the atom beam can not be addressed by the bichro-

matic force. An iris with 2 mm diameter is used for better resolution and was inserted

into the atom beam after the transverse collimation as shown in Figure 3.6.
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(a) ∆φ = −90◦ (b)∆φ = −60◦ (c) ∆φ = −30◦ (d) ∆φ = 0◦

(e) ∆φ = 0◦ (f) ∆φ = 30◦ (g) ∆φ = 60◦ (h)∆φ = 90◦

Figure 4.1: Measured atom beam image signals with different relative phases
∆φ of the bichromatic frequencies. The inserted iris blocks∼99% of the atom
beam and leads to the low signal to noise ratio as compared to previous signals
[16, 21]. The vacuum tube near the CCD camera can be seen at the edges of
the images.

Figure 4.1 shows the signal of the atom beam imaging tool for different phases of the

bichromatic frequencies. The clear dependence of the force on the relative phase differ-

ence of the light and even sign reversal is a key signature of the bichromatic force as

mentioned in [22]. The low signal to noise ratio of the images is due to the inserted iris,

which is blocking∼99% of the atom beam so that only few metastable 40Ar atoms reach

the beam imaging chamber.

Although the atom beam imaging was a very useful tool to create the first signals of the

bichromatic force, it was too unprecise tomake quantitativemeasurements. The distance

between the imaging tool and the bichromatic interaction zone was approximately two

meters. For too large forces, the signal is cut off since the atoms collide with the wall of

the vacuum chamber.

4.2 Observation of the Bichromatic Force

The first qualitative proof of the bichromatic force on metastable 40Ar was performed

with a fluorescence spectroscopy in the quench chamber. The atom flux monitoring [16]
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was modified to detect the 811.754 nm fluorescence of the atoms which are excited with

an additional laser beam. The laser could be tuned in the range of the velocity distribu-

tion and the fluorescence signal was strong enough to be detected by themodified optics.
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Figure 4.2: The signal of the fluorescence spectroscopy performed in the MOL
chamber. Both beams together are stronger than one beam even though they
are counter-propagating and deflect the atoms in different directions if used
separately. This is a clear indication of the bichromatic force.

Figure 4.2 shows the detected fluorescence signal for a scan of the tuneable spectroscopy

laser. The bichromatic beams are counter-propagating and deflect the atoms in different

directions when they are turned on separately. However, both beams together show a

dependence on the relative phase difference of the optical frequencies and exceed the

deflection of one beam for certain phases. This is a clear indication for the bichromatic

force.

The fluorescence spectroscopy is using existing optics that have been slightly modified.

Unfortunately, the signal was very weak and increasing the power of the tuneable laser

would lead to additional radiative forces. Therefore, all quantitative measurements that

are presented in the next section have been done with absorption spectroscopy.

48
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4.3 Characterization of the Bichromatic Force

The setup of the absorption spectroscopy is shown in Figure 3.6 of the last chapter. The

frequency of the absorption laser is offset-locked [20] to the atomic resonance ωA and

can be tuned by several hundreds of MHz. This setup provides an absolute frequency

scale to measure the velocity distribution of the atom beam.

The offset-lock can be used manually by setting different frequencies or by modulation

with a function generator. The former method allows good frequency resolution and ab-

solute values of the detunings while the latter is used for fast feedback of the signal with

the loss of absolute frequency dependence. To combine the advantages of both meth-

ods, the absorption signal is measured once by manually locking the laser frequency at

certain detunings. Assuming a constant velocity distribution of the atom beam, these

acquired data points can be used to fit a frequency scale onto the modulated signals.

Figure 4.3 shows the absorption signal acquired with both methods. The manually taken

data points are plotted as circles and have defined detunings. The scanned absorption

signal is first fitted with a Voigt profile, since the absorption signal is a convolution of

Gaussian Doppler profile and Lorentzian natural linewidth. This profile is then scaled to

fit the manually acquired data points which gives an absolute frequency scale.

The width of the measured transverse velocity distribution is [10.2± 0.9]MHz which is

significantly narrower than the distribution right after the source [11] due to the trans-

verse collimator and the differential pumping stage, which acts as passive collimation.

This leads to a good resolution of the Doppler shift that is added by the radiative or the

bichromatic force.

TheDoppler shift of amoving atom is given by (3.4). Using parameters of the Schaefter+Kirch-

hoff 60FC-4-A11-02 coupler with beam diameter of 1.97 mm, the theoretical maximal
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Figure 4.3: The manually acquired data of the absorption spectroscopy with
defined detunings are shown as circles. The scanned absorption signals are
fitted to these points to get an absolute frequency scale. The shifted absorption
signal is taken with only one of the bichromatic beams on and is assumed to
be deflected by themaximal radiative force. The solid curves are Voigt profiles
fitted to the scanned signals.

Doppler shift with radiative force can be calculated and leads to:

νD,rad = −k
Frad,max

m

d

vlong
= 2.26MHz (4.1)

The dashed curve in 4.3 shows the absorption signal when only one of the bichromatic

beams is used. The frequency difference using the distance of the minima is [2.13±0.36]

MHz and corresponds to the maximal radiative detuning within the error tolerances.

In the scope of this work, the bichromatic forces are measured in units of the maximal

radiative force, which is obtained by blocking one of the beams. The intensity of the

remaining bichromatic beam with center frequency ωA is large enough, so that the max-

imal radiative force is achieved even though the beam is pulsed.
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Figure 4.4: The absorption spectroscopy signal of the oscilloscope. The mea-
sured curves show the absorption with no laser beams, a single on-resonance
frequency from one side and bichromatic beams with relative phase adjusted
to the maximum Doppler shift of the signal. The absorption signal has a
Voigt shape due to the convolution of Gaussian Doppler velocity distribution
and Lorentzian natural linewidth [22]. The former is dominant, therefore the
curves are fitted with a pure Gauss function.

The three curves in Figure 4.4 show the absorption signals with no deflecting laser beams,

with one of the bichromatic beams turned on which acts with radiative force and with

both bichromatic beams on, where the relative phase is adjusted to maximal detuning.

The detuning is given in units of the maximal radiative detuning. The distance between

the absorption minima gives the bichromatic force:

FBCF = [2.95± 0.54]Frad,max (4.2)

The error tolerance is the standard deviation of different measurements that have been

performed with the same setup. In the scope of this work, the stability of the optical
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4.3. CHARACTERIZATION OF THE BICHROMATIC FORCE

setup and the resolution of the spectroscopy are the main contributions to the statistical

error. The bichromatic force has been very sensitive to the alignment of the optical com-

ponents which were therefore adjusted frequently. The resolution of the spectroscopy is

good enough to separate the different signals, but will increase the statistical error since

the width of the absorption is in the order of the expected detunings.

The measured bichromatic force in (4.2) is lower than the theoretically calculated force

from the optical Bloch equations that is corrected for the Gaussian beam profile in Figure

2.14. This seems to be a systematic error in the setup, as all measured data are lower than

expected. The possible reasons are discussed in the next chapter and a scaling factor of

0.8 is used on the theoretical curves in this section to have good agreement with the

experimental data.
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Figure 4.5: The bichromatic force measured with the absorption spectroscopy
for different relative phases∆φ of the electric fields. The acoustic waves were
changed by half the optical phase, since the light is passing twice through the
AOM. As expected, the force changes signwith a phase change of∆φ = 180◦.

Figure 4.5 shows the bichromatic force in units of the maximal radiative force for differ-
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ent relative phases of the frequencies. The force is zero for symmetric phase differences

∆φ = 0◦ and∆φ = 180◦ = π and the absolute value is maximal for∆φ = ±90◦ = ±π
2
.

As expected, the force also changes direction, which is a key signature of the bichromatic

force [22,26]. The theoretical phase curve is plotted as solid line and was calculated with

the optical Bloch equations and corrected for the Gaussian beam profile. Here again, the

theoretical values are scaled by 0.8. The correction for the Gaussian beam profile leads

to a broader phase dependence of the force compared to the non-corrected theoretical

phase curve in Figure 2.9.
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Figure 4.6: The bichromatic force with fixed detuning∆ = 65MHzmeasured
for different powers of the laser beams. The solid line is the average of the
calculated curves from 2.13. The highest power reached in the scope of this
work is 25 mW per frequency, which leads to the largest bichromatic force.

The dependence of the bichromatic force with fixed detuning ∆ = 65 MHz on the opti-

cal power of the laser beams is shown in Figure 4.6. The measured data with a relative

phase difference ∆φ = 90◦ are plotted as circles and the mean of the theoretical curves

calculated with the optical Bloch equations in Figure 2.13, scaled by 0.8, is shown as a

solid line. The maximum force is achieved with a mean power of 50 mW, which gives
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25 mW in per frequency. As expected from the theoretical curve, the force is saturated

for larger power values and the highest achievable mean power of 50 mW is used for

further measurements of the detuning ∆ and the Doppler shifted force profiles.
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Figure 4.7: The bichromatic force for different detunings measured with mean
power 50 mW, which gives 25 mW per frequency. The solid line is the
scaled theoretical force given by (2.11) and the measured data points show
the proportionality of the force with detuning ∆, as expected from the Dou-
bly Dressed Atom model.

According to (2.11) of the Dressed State model, the bichromatic force is proportional to

the detuning ∆ of the light frequencies. Figure 4.7 shows measured data of the bichro-

matic force with different detunings ∆ where the mean optical power of the beams is

adjusted to 50 mW as described above. Since the performance of the AOM's were sig-

nificantly lower for frequencies below 60MHz and the upper limit of the Agilent 33250A

frequency generator was 80 MHz, only this range could be covered. The solid line is a

linear fit of the acquired data points and shows the proportionality of the force on the

detuning frequency ∆.
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The bichromatic force also depends on the Doppler shift νD of the atom, which shifts

the atomic resonance ωA from the center of the bichromatic frequencies in a laboratory

reference frame. By adding +kvtrans to the frequencies from one side and −kvtrans to

the frequencies from the other side, the same effect can be observed with a transversally

collimated atom beam, since it will appear detuned in a reference frame moving with

vtrans. This is used to measure the force profiles.
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Figure 4.8: The measured bichromatic force profile for different detunings
kv of the optical frequencies. The measured data points resemble the rough
structure of the force profiles calculated with the optical Bloch equations and
corrected with Gaussian beams, shown as the solid curve.

Figure 4.8 shows the measured data of the force for different Doppler shifts νD as cir-

cles. The theoretical values calculated from the optical Bloch equations and corrected

with a Gaussian beam profile are plotted as solid curve. The acquired data points from

the absorption spectroscopy show the expected large Doppleron resonance clearly, but

although they resemble the rough structure of the theoretical curve, it seems they are

shifted towards larger detunings. This can be explained by the simplicity of the model,

that does not take additional recoil momentum of the photons and the longitudinal ve-
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locity of the atoms into account. Even for small misalignments of the setup, the large

longitudinal velocity vlong ≈ 274m
s [11] contributes to the Doppler shift.

The results of this chapter show a general good agreement of theory and experiment

and the possibility to use the bichromatic force on metastable argon atoms. For practi-

cal uses, the strength of the force is only limited by the detuning ∆ and therefore the

available optical power to fulfill the intensity condition in (3.3). The theoretical values for

constant Rabi frequencies over the cross section of the laser beams have to be corrected

dramatically due to Gaussian beam profiles.

4.4 Bichromatic Precollimator

The intended task for the bichromatic force in ATTA was to cool down the transverse

velocity of atoms leaving the metastable source into the capture range of the collima-

tor [16, 19]. At the end of this work, an attempt for such a precollimator directly after

the source was set up.

λ/4

λ/4

Ar Ar*

CCD

Atom Beam

Imaging

Collimator

Source

Figure 4.9: The setup for the attempt to precollimate the metastable argon
atoms. More atoms are slowed down transversally to the capture range of
the collimator [16,19] and the enhancement of the atom beam imaging signal
can be measured.

Figure 4.9 shows the setup for the precollimation experiment performed in this work

where the 40Ar atoms can be pushed in one direction by the bichromatic force or in two
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directions by the radiative force. The necessary Doppler shift νD was obtained by the

maximal enhancement of the atom beam imaging signal. For kv = 2π · 25 MHz, an

enhancement of ∼ 7% was observed for one radiative beam and ∼ 12% for both beams.

Here, the same Schaefter+Kirchhoff 60FC-4-A11-02 couplers with beam diameter of 1.97

mm are used as in the previous section.

However, the maximal enhancement using bichromatic beamswith the same parameters

as in the last section was only ∼ 3% for a Doppler shift of kv = 2π · 35 MHz and ideal

phase∆φ = π
2
. The result is surprising since the measurements of the bichromatic force

of the last section show that it exceeds the radiative force by a factor of ∼ 3. This will

be discussed in the next chapter.
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Chapter 5

Conclusion

This chapter gives a brief summary of the work on the bichromatic force in the scope of

the ATTA experiment. The conclusion with regard to the experimental results and an

outlook for potential future improvements is presented in the following section.

5.1 Summary

The purpose of this work was to observe and characterize the bichromatic force on

metastable 40Ar, which has been demonstrated for other elements in previous works

on that topic [12--15, 27, 32, 38]. The bichromatic force promises to exceed the radiative

force if certain conditions can be fulfilled and has possible applications in the ATTA ex-

periment for improving the 39Ar detection efficiency.

Prior to this work, two tapered amplifiers have been set up to achieve the necessary op-

tical power for the Rabi frequency condition in (3.3) and the amplification of the pulsed

beams has been shown [36, 37]. The frequencies are generated by multi-mode double-

pass AOM's shown in Section 3.1 and the adjustment of the relative phase difference of

the optical beams by changing the phase of the sound waves of the AOM have be shown

in Section 3.2. The amplified four-frequency light has been guided to the apparatus,

where an interaction zone was set up in place of the MOL.

In the scope of this work, different detection methods have been tested. The atom beam
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imaging tool was useful to observe the first bichromatic signal but was unsuited for

quantitative measurements. A saturation spectroscopy on the 1s5 → 2p9 transition was

performed as described in Section 3.3. The first attempt was in the quench chamber

where the atom flux monitoring was modified to detect the 811.754 nm fluorescence, but

the signal turned out very weak. An absorption spectroscopy directly after the bichro-

matic interaction region was set up to create stronger signals.

The resolution of the absorption spectroscopy was good enough to detect the Doppler

shift of the atoms due to the radiative force. By blocking one of the bichromatic beams,

the maximal radiative force could be measured and this was used as reference since the

bichromatic force is given in units of the radiative force in this work.

The characteristics of the bichromatic force have been observed in different measure-

ments as presented in Section 4.3. The experimental data cover the strength of the force,

optimal light power, phase dependence of the force, dependence on the bichromatic de-

tuning ∆ and the dependence on the Doppler shift of the atoms. All measured bichro-

matic forces were lower than the theoretical predictions that include the Gaussian nature

of the laser beams. A scaling factor of 0.8 due to systematic errors has been employed

to fit the data.

5.2 Conclusion and Outlook

The bichromatic force on metastable 40Ar atoms has been shown in this experimental

work. The observed forces were clearly stronger than the radiative force and the strength

and direction of the forces depend strongly on the relative phase difference of the op-

tical frequencies. Both effects are key signatures of the bichromatic force and show its

possible application to 40Ar.

However, themeasured bichromatic force is approximately half as strong as the expected

forces from the basic calculations in Sections 2.1 - 2.3. An important correction of the
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calculated force profiles considering Gaussian intensity distribution of the laser beams

was introduced in Section 2.4. Including this, the Rabi frequency condition can not be

fulfilled everywhere across a laser beam and the average force has to decrease in this

case.

The experimental data are still slightly below the corrected theoretical calculated curves,

which are therefore scaled by a factor of 0.8 to fit the data. There are several reasons for

the remaining systematic errors that will be discussed in the following.

Overestimation of the interaction time for multi-level atoms: The description of

the bichromatic force is using a two-level system in each of the presented models. Once

the stretched states are reached, the magnetic sublevels mJ of 40Ar can be neglected.

However, it will take time to reach the stretched states and during this process, non-

optimal conditions are given since the Rabi frequency is depending on the strength of

the dipole transition. This effect leads to an overestimation of the effective interaction

time and to verify this, the force could be measured with different interaction lengths.

The mentioned effect should not increase in this case as it is independent of the beam

diameter. An optical pumping to the stretched states beforehand should increase the

force, but a quick attempt to do this in the scope of this work led to no effect and has to

be investigated further in the future.

Frequency imbalances due to the tapered amplifier: The beating of the signals after

the tapered amplifier was worse than the beating of the seeds, which had a visibility

of νvis ≈ 1, that leads to imbalances of the four frequencies. This will decrease the

bichromatic force, as all models presented in this work rely on the same power of each

frequency. The advantage of overlapping the two frequencies before the amplification

was to preserve laser power but due to non-linear effects, higher power of the TA could

not be used. This should be taken into account and the laser beam should be amplified

before passing the multi-mode AOM's in future setups on the bichromatic force.

Underestimation of the laser beam diameter for the radiative force: The interac-
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tion length of the atoms with the radiative force is assumed to be the same as for the

bichromatic force, but since a very high power is used, the cross section of the laser

beam acting with radiative force will be larger than the width of the couplers. For mea-

surements in future setups that use the presented method of this work, an iris should be

used after the coupler to have a defined laser beam diameter.

Aside from the above-mentioned systematic errors, small misalignments can reduce the

measured force. The bichromatic beams were adjusted with different tools but they may

not have been perfectly perpendicular to the atomic beam and the overlap of the two

beams may not have been perfect. Therefore, the introduced scaling factor of ∼ 0.8 is

used to correct potential systematic errors.

Themeasured bichromatic force in (4.2) is in agreement with the theoretical value within

the error tolerance. The measurements show a clear signature of the bichromatic force

on 40Ar as it is larger than the radiative force and has a strong phase dependence. The

signal of the atom beam imaging quantifies the atom flux in the MOT chamber. Its en-

hancement using a bichromatic precollimator was lower than the signal with the same

setup using the radiative force. This is surprising as the measured bichromatic force ex-

ceeds the radiative force by a factor of ∼ 3. Since the interaction region was directly

after the source tube, this could be an effect of the RF-discharge in the metastable argon

source as the magnetic field is changing with ∼ 130 MHz. This has to be investigated

in future works before setting up a bichromatic precollimator. If the RF-discharge is the

problem, optical excitation or DC-discharge sources could overcome this.

Even if the above-mentioned problem can be solved, previous bichromatic collimation

experiments still required four times the interaction length of a radiative collimation

since each direction has been set up independently. Therefore, the parameters in this

work are not sufficient to surpass a radiative precollimator as the bichromatic force was

only [2.95±0.54] times stronger than the radiative force. According to the linear depen-

dency of the bichromatic force on the detuning∆ in Figure 4.7, a minimum detuning of

∆ = 2π ·90MHz is required to be more efficient than in the radiative case. This requires
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a mean power of ∼ 100 mW that could not be achieved with the current setup due to

non-linear effects of the tapered amplifier. Therefore, a radiative precollimator will be

included in the current setup, where an enhancement of ∼ 12% in one dimension has

been measured for non-optimal beam diameters of 2 mm.

However, under certain conditions, it should be possible to overlap two pairs of bichro-

matic beams which would halven the interaction length. In the same dimension (e.g.

horizontal or vertical), the three frequencies ωA and ωA±2∆ lead to a bichromatic force

from both directions with center at νD = ±kv = ±∆. It is also possible to overlap the

interaction region of perpendicular beams by adjusting the relative phase difference of

each frequency to ∆φ = π
2
, which requires four synchonized frequencies.

This work presented a first study of the bichromatic force on Argon and many param-

eters are chosen for experimental convenience. It turned out that the subject was more

complex than in the simple π-pulse model that has been used for a first attempt at the

beginning of this work. The more advanced Doubly Dressed Atommodel and numerical

calculations have been studied afterwards and the presented experimental data could be

explained with these theoretical considerations. From the author's point of view, the

presented results were satisfying for the characterization of the bichromatic force.
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Figure 5.1: A detailed schematic diagram of the ATTA apparatus in 2013 [16].
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Figure 5.2: A detailed schematic diagram of the 40Ar transitions [21].
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Appendix C

Figure 5.3: A schematic diagram of the laser system [21].
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Appendix D
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Figure 5.4: A schematic diagram of the Schwenkersystem used in the scope
of this work. Only the components of the Schwenker are shown here where
the Schwenker and the Schwenker are not included for simplicity.
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