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Lattice gauge theories are fundamental to such distinct fields as particle physics, condensed matter,
and quantum information science. Their local symmetries enforce the charge conservation observed
in the laws of physics. Impressive experimental progress has demonstrated that they can be engi-
neered in table-top experiments using synthetic quantum systems. However, the challenges posed
by the scalability of such lattice gauge simulators are pressing, thereby making the exploration of
different experimental setups desirable. Here, we realize a U(1) lattice gauge theory with five matter
sites and four gauge links in classical electric circuits employing nonlinear elements connecting LC
oscillators. This allows for probing previously inaccessible spectral and transport properties in a
multi-site system. We directly observe Gauss’s law, known from electrodynamics, and the emergence
of long-range interactions between massive particles in full agreement with theoretical predictions.
Our work paves the way for investigations of increasingly complex gauge theories on table-top clas-
sical setups, and demonstrates the precise control of nonlinear effects within metamaterial devices.

Local symmetries provide a mathematical framework
to describe emergent behavior from a small set of mi-
croscopic rules. Paradigmatic examples are topological
phases of matter, which can emerge as ground states
of an extensive set of commuting local operators [1, 2].
In the Standard Model of particle physics all interac-
tions between elementary particles are mediated by gauge
bosons [3]. Recently, there has been a flurry of proposals
and experimental implementations of lattice gauge theo-
ries in quantum many-body platforms [4–14]. Yet, gauge
invariance is as fundamental in classical physics and ap-
plications thereof. A famous example is classical elec-
trodynamics, where gauge invariance appears as Gauss’s
law. Its presence in Maxwell’s equations has been a guid-
ing principle for transformation optics [15, 16] based on
a variational approach [17], which has led to the experi-
mental realization of intriguing devices such as metama-
terials with negative indices of refraction [18] and invis-
ibility cloaks [19]. In this light it is natural for gauge
invariance to be investigated using classical setups that
are usually less expensive and simpler to implement com-
pared to their counterparts in quantum synthetic matter.

Here, we engineer a complex metamaterial with a lo-
cal U(1) gauge symmetry—the simplest continuous gauge
symmetry and the basis of quantum electrodynamics—
which embodies the invariance of the equations of motion
under a local phase transformation. We base our setup on
classical electric circuits, which have proven to be a pow-
erful platform for studying topological lattice structures
and multidimensional metamaterials [20–22], as well as

noise-assisted energy transport [23, 24].

In the material, electric fields propagate through a
chain of LC oscillators, and the U(1) symmetric cou-
pling is engineered from three-wave mixers. The radio-
frequency circuit is then described by nonlinear differ-
ential equations, similar to the ones known from non-
linear optics. Based on this approach, we experimentally
demonstrate the engineering of a lattice with nine LC os-
cillators that represent five matter fields and four gauge
links, see Fig. 1. We demonstrate the high tunability
of the setup, and confirm its faithful representation of
the desired model using analytical models and numerical
benchmark calculations. The ease of use and low cost of
such classical metamaterials compared to quantum ex-
periments open new ways to employ gauge symmetries
for a wide range of materials from acoustics [25] over
photonics [26] to mechanical pendulums [27].

Our material can be described within the language of
a classical lattice gauge theory as sketched in Fig. 1A.
In this framework, matter fields reside on discrete sites
x of a 1-dimensional lattice and are coupled through
links, which host the gauge fields. Within our model-
ing, we implement both the matter and the gauge fields
by harmonic oscillators described by the complex num-
bers ax and bx. In the appropriate rotating frame, the
matter sites ax have staggered frequencies (−1)xm (see
Appendix A). Two consecutive matter sites are coupled
by a gauge field bx on the link connecting them. The
coupling term is a three-wave mixing term with the in-
teraction frequency J . This system is described by the
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Figure 1. Engineering a classical gauge theory.
(A) Structure of a lattice gauge theory. Matter fields reside
on sites, gauge fields on the links in-between. (B) Circuit im-
plementation with LC resonators for each site and link. The
interaction is realized by three-wave mixers as described in
the main text. (C) Measurement of Gauss’s law. The Gauss
law Gx can be measured through the oscillator energy on each
matter site (blue) and its neighboring links (orange). Links
that appear with negative sign in Gauss’s law are shown in-
verted along y-axis (dashed). The smaller oscillation of the
resulting observable (black) confirm that the local conserva-
tion laws are fulfilled. Curves are offset for clarity (see Ap-
pendix C).

classical Hamiltonian

H = J

{ ∑

x odd

(
a∗x b

∗
x ax+1 + c. c.

)

+
∑

x even

(
a∗x bx ax+1 + c. c.

)
}

−m
l∑

x=1

(−1)x a∗x ax, (1)

with equations of motion

−iȧx =
∂H

∂a∗x
, −iḃx =

∂H

∂b∗x
. (2)

We realize the Hamiltonian (1) through an array of
LC oscillators, whose charge Qx (flux Φx) represents the

real (imaginary) part of the complex fields ax. Dividing
out a typical energy and time scale allows us to write
the Hamiltonian in units of frequency and in terms of
dimensionless fields ax and bx.

The Hamiltonian is invariant under the local U(1)
transformation ax → ax e

iθx where the gauge field ab-
sorbs the difference bx → bx e

i(−1)x(θx−θx+1). With the
gauge symmetry comes a local conserved quantity Gx,
which is the generator of Gauss’s law. Writing ρx = a∗x ax
and Ex = −(−1)xb∗x bx yields the expression Gx =
ρx + Ex−1 − Ex. Interpreting ρx and Ex as the lo-
cal oscillators’ energies, Gauss’s law describes the con-
servation of the total energy on a matter site and its
neighboring sites and gauge fields. Gauss’s law is im-
plemented through the capacitive coupling with a ring
of three appropriately connected voltage multipliers (see
Appendix B). The frequencies of the LC oscillators are
designed such that the sum of the odd matter sites and
the links is approximately equal to the frequency of the
even matter sites. The small frequency detuning m can
then be isolated from the fast timescales in the rotating
frame. By averaging over fast timescales on the order of
the free resonance frequency ωx, gauge-violating terms in
the coupling are removed [14, 28, 29], which allows the
U(1) gauge invariant Hamiltonian of Eq. (1) to emerge.

The LC oscillators realizing the matter sites have a
free resonance frequency of 31.0(5) kHz (86(1) kHz) for
odd (even) sites (see Appendix B). The links have a free
resonance frequency of 55 kHz with the possibility to be
tuned. This setup results effectively in a controllable de-
tuning of 0 kHz ≤ m ≤ 4 kHz with a precision of 200 Hz.
The coupling strength, depending on free resonance fre-
quencies, is J = 0.92(5) kHz atm = 2.5 kHz. With a typ-
ical quality factor of 50 the dissipation in the resonators
takes effect before the U(1) interaction. As a remedy, a
positive feedback current controlled by a pickup coil in
the resonator inductors is added, resembling regenerative
receivers of early radio technology. We observe a non-
trivial energy exchange between matter sites as shown in
Fig. 1C. The local symmetry enforces concerted dynam-
ics of matter sites and their neighboring links, such that
the measured Gauss law has only small variations. This
observation quantifies the weak violation of local gauge
invariance in our metamaterial.

To analyze the non-trivial dynamics, we investigate the
spectral properties of the chain. We set the initial condi-
tions to Qx(t = 0) = 0 and the initial flux is chosen such
that the oscillators start with an amplitude of ∼0.7 V.
After initialization, 8.3 ms long time traces of the voltage
signals of all resonators are available for spectral analy-
sis as shown in Fig. 2. The observed spectra can be well
understood perturbatively as they are obtained in the
regime of large detuning. The spectra of the matter sites
contain two frequency components of different strengths.
The stronger frequency originates from the free resonance
of the LC oscillators. The second and weaker one orig-
inates from the pertubative interactions with the gauge
links. Gauss’s law implies that the gauge field has to
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Figure 2. Site-resolved spectrum. (A) Level scheme of
the Hamiltonian in the regime of large mass m = 2.5 kHz
compared to the coupling strength J = 0.92 kHz. The bare
frequencies of the matter sites (blue) have a resonance at
frot = −(−1)xm and the links (orange) at frot = 0, shown as
straight lines. They are dressed by the gauge invariant cou-
pling, which allows excitations to move between matter sites
(green arrows). The coupling results in weak spectral lines
at frot = (−1)x m for the matter field, which are mirrored on
the links through weak spectral lines at frot = −2m due to
the Gauss law. (B) Observed frequency spectrum of oscillator
voltages. The positions of spectral lines compare well to the
predicted level structure from perturbation theory.

match the appearance of a second frequency component
in the matter field. This appearance is clearly visible in
our spectra and is observed at the predicted frequency.

We employed the circuit to systematically investigate
the dependence of the spectrum on the mass, as shown in
Fig. 3. For large mass, we observe experimentally a linear
dependence of the spectral lines, which is well explained
by first-order perturbation theory in the thermodynamic
limit (see Appendix E). This agreement indicates that
even at few matter sites, our lattice gauge theory faith-
fully reproduces the thermodynamic limit. Similar be-
havior has also been seen in a quantum-link-model lattice
gauge theory, where few lattice sites can capture the dy-
namics of local observables in the thermodynamic limit
[30]. For smaller mass, we observe deviations from the
perturbative predictions derived around the large-mass
limit, while non-perturbative numerical simulations of
the spectra yield a quantitative agreement for the salient
experimental observations over the full regime.

In our metamaterial, the Gauss law implies long-range
interactions between matter sites [7] as visualized in
Fig. 4A (see Appendix D for the derivation). They man-
ifest as shifts of the resonance frequency. To investigate
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Figure 3. Mass dependence of the lattice gauge the-
ory spectrum. A spectral analysis of our model in Eq. (1)
with five matter sites, as a function of the matter field mass
m, is presented in terms of experimental measurements and
numerical simulations. All spectral features observed in the
experiment are well reproduced by the numerics. Agreement
with first-order perturbation theory in the thermodynamic
limit (black lines) confirms that our implementation is suffi-
ciently large to render finite-size effects insignificant.

these shifts, we populate the first matter site by driving
it with an alternating current. The first site has the typ-
ical frequency response of a driven harmonic oscillator
with resonance at fdrv = +m, where fdrv is the driving
frequency in the rotating frame of this first site as ex-
plained in Appendix F. Amplitudes of the other matter
sites are initialized to zero, while the amplitudes of dy-
namical links are initialized as previously. We observe
a significant shift of the resonance frequency on the sec-
ond matter site as shown in Fig. 4B. We extended this
measurement of the frequency shift fU to all matter sites
as shown in Fig. 4C. We observe no significant decay of
fU as a function of distance from the first site. The role
of interactions is confirmed by good quantitative agree-
ment between our observations and perturbation theory
without free parameters. These findings show, that our
experimental platform provides high control over long-
range interactions through the engineering of local sym-
metries.

This work opens the door towards the investigation of
gauge theories in electrical circuits. The realization of
the Hamiltonian (1) is directly transferable to the quan-
tum realm using superconducting circuits architectures
cooled-down to 10 mK, which can be manipulated and
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Figure 4. Long range interactions between matter sites. (A) The existence of the links introduces The gauge invariant
coupling of the matter sites leads to long-range interactions between them (green lines). To observe the resulting frequency
shift, we populate the first site in a controlled fashion by driving with an alternating current of frequency fdrv. (B) The
first matter site has the frequency response of a harmonic oscillator with resonance frequency m = 2.5(2) kHz and its signal
is off-resonantly coupled into the second matter site with a coupling strength J = 0.92(5) kHz. The response of the second
matter site has a marked frequency shift, which is well explained through perturbation theory by the interaction with the
first matter site (red line). (C) We measured the frequency shifts fU as a function of lattice distance to the first site. The
observed independence of distance within the experimental uncertainties is in good agreement with perturbation theory. The
uncertainties are systematically limited by the frequency resolution.

readout with microwave signals while maintaining long
enough quantum coherence. In such a platform, the re-
quired gauge invariant three-wave mixing interaction can
be implemented using Josephson ring modulators based
on superconducting tunnel junctions [31]. Our work also
directly offers the possibility to implement systems in
higher dimensions following models that were proposed
for 2D [32–39] or non-Abelian systems [40–48] with the
exciting prospect of directly observing confinement pre-
dicted in theses theories.
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SUPPLEMENTAL MATERIAL

Appendix A: Hamiltonian derivation

The equations of motion for the circuit sketched in
Fig. 1B written as Kirchhoff current laws are

Ix =
1

Lx
Φx + 2CΦ̈x

− C

Vref

(
d

dt
Φ̇′x−1Φ̇x−1 +

d

dt
Φ̇′xΦ̇x+1

)
, (A1a)

I ′x =
1

L′x
Φ′x + 2CΦ̈′x −

C

Vref

d

dt
Φ̇xΦ̇x+1 . (A1b)

On the left hand side are external currents I(′)x , where
primed quantities denote the links. The right hand side
is formulated in terms of magnetic fluxes Φ

(′)
x which are

integrals of the voltage signal Φ̇ = V . The index x
runs from 1 to l for sites and from 1 to l − 1 for links.
Vref = 10.2(3) V is the internal reference of the voltage
multipliers. Upon setting I(′)x to zero, which holds true
when no external drive is connected, these equations arise
from the following Lagrange function with generalized co-
ordinates Φ

(′)
x :

L =
1

2

∑

x,x′

(
2CΦ̇2

x −
1

Lx
Φ2
x

)
−
L−1∑

x=1

C

Vref
Φ̇xΦ̇′xΦ̇x+1.

(A2)
Because the interaction is in the momentum terms,

the conjugate momenta Q = ∂L/∂Φ̇, which are needed
to transform to the Hamiltonian, are non-trivial to invert
for Φ̇(Q). In the small coupling approximation, i.e., as-
suming typical voltages 〈Φ̇〉 to be much smaller than the
reference voltage Vref, the conjugate momentum is the
local oscillator’s electric charge Qx ≈ 2CΦ̇x.

After defining the scales V0 = 1 V for voltage and
f0 = ω0/2π = 60 kHz for time, we change to dimen-
sionless flux Φ̄ = ω0 Φ/V0 and charge Q̄ = Q/2CV0. The
corresponding Hamiltonian can be expressed in dimen-
sionless units after dividing by the energy scale 2CV 2

0 :

H̄ =
1

2

∑

x,x′

(
ω2
x Φ̄2

x + Q̄2
x

)
+
∑

x

V0
2Vref

Q̄xQ̄
′
xQ̄x+1 . (A3)

Here, the free resonance frequencies 1/
√

2CLx of the LC
oscillators are normalized to ωx = 1/(ω0

√
2CLx). Using

dimensionless time τ = tω0 allows Hamilton’s equations
to appear unchanged.

The complex variables are defined from dimensionless
quantities as

ax = 1√
2ωx

(Q̄x + iωxΦ̄x), bx = 1√
2ω′

x

(Q̄′x + iω′xΦ̄′x) ,

(A4)
with complex conjugates as canonical momenta. The
Poisson brackets with respect to the old variables (Φ, Q)

are {ax, a∗y} = iδxy, requiring the additional i in Hamil-
ton’s equations (Eq. (2) in main text). The Hamiltonian
in the new variables is

H =

l∑

x=1

ωx a
∗
x ax +

l−1∑

x=1

ω′x b
∗
x bx

+

l−1∑

x=1

Jx (ax + a∗x)(bx + b∗x)(ax+1 + a∗x+1)

(A5)

with coupling strength

Jx =
1

4

√
ωxω′xωx+1/2

V0
Vref

. (A6)

Only two of the coupling terms in Eq. (A5) are invariant
under the local U(1) transformation introduced in the
main text and discussed in Appendix C). All other terms
can be separated in a rotating frame with the non-unique
staggered tuning

ωx − ωx+1 = (−1)x (ω′x − δx) (A7)

requiring δx to be much smaller than the resonance fre-
quencies. The rotating frame is then

ax → ax e
i(ωx+(−1)xmx)τ , (A8a)

bx → bx e
iω′

xτ , (A8b)

using site based detunings mx+1 = δx − mx, m1 = δ1.
The simplest allowed configuration is all m = mx = δx
having the same value. In the rotating frame, and with
Jx = J and mx = m independent of x, the Hamiltonian
takes on the form of Eq. (1) in the main text. By dividing
the equations of motion by the time scale 1/ω0, all mea-
surements of the Hamiltonian are in units of frequency:

d

dτ
ax = i

∂H

∂a∗x
⇔ d

dt
ax = iω0

∂H

∂a∗x
. (A9)

Similarly the time scale can be absorbed into the mass m
and coupling J to give them and all figure axes intuitive
units.

Driving. For the Hamiltonian description, we have set
the external currents I(′)x (t) to zero, but for the driven
model, these have to be taken into account. This is
achieved by adding a term to the equations of motion
(2):

dax
dτ

= i
∂H

∂a∗x
+ Îx(τ) , (A10a)

dbx
dτ

= i
∂H

∂b∗x
+ Î ′x(τ) . (A10b)

Here, Î(′)x (τ) is the dimensionless external current in the
rotating frame. For the first site, which is the only one
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in our experiment that is connected to an external drive,
the calculation from Ix(t) is as follows:

Î1(τ) =
I1(τ/ω0)

2
√

2ω1 ω0CV0
e−i(ω1−m1)τ . (A11)

A harmonic driving signal I1(t) = I sin(2πfextt) takes in
the rotating wave approximation the form

Î1 =
I√

2ω1 ω02CV0
sin
(
fext
f0
τ
)
e−i(ω1−m1)τ

≈ 1

2i

I√
2ω1 ω02CV0

e(fext/f0−ω1+m1)τ . (A12)

In the main text, we use fdrv = fext/f0 − ω1 +m1 to de-
note the external driving frequency, in the rotating frame.

Dissipation. We want to inspect features of the system
with external driving close to resonance. Without tak-
ing into account dissipation, numerical results diverge in
these regimes. As a remedy, we add an empirical dissi-
pation term to the equations of motion,

dax
dτ

= i
∂H

∂a∗x
+ Îx(τ)− kax , (A13a)

dbx
dτ

= i
∂H

∂b∗x
+ Î ′x(τ)− kbx . (A13b)

The dissipation term is used only for numerical results of
the driven system shown in Fig. 8.

Simulation. The equations of motion above, includ-
ing driving and dissipation terms, are integrated with
standard numerical solvers starting from initial condi-
tions like in the experiment. The parameters of mass
and coupling are based on tuning parameters. Only the
dissipation strength is treated as free parameter and ad-
justed to k = 0.0045 such that observations match the
simulations in Fig. 8. Numerical results have negligible
violation of local conservation laws.

Appendix B: Properties of the LC oscillators and
multipliers

This section describes implementation details of the
circuit and lists some device properties. The overall de-
sign frequency of the circuit between 10 kHz and 100 kHz
has a number of advantages: it allows cheap integrated
circuits to be used, does not require high-frequency aware
design of the circuit, and simplifies the recording of fully
sampled time traces of the dynamics.

Capacitors. All capacitors in the circuit schematic
(Fig. 1B) are polypropylene film capacitors and have the
same value of C = 10 nF ± 2%. Similar to the design of
some topological metamaterials [20], the coupling capac-
itance doubles as the on-site capacitance and the small
coupling limit is achieved by a scale factor in the multi-
pliers.

Inductors. The inductors Lx are handmade to match
resonance frequencies ω = 1

√
2CLx in the range of

1

Figure 5. Setup. Photograph of the circuit with 5 sites.
Milled circuit boards can be chained together for arbitrarily
large lattices. Inside the handmade coils, secondary feedback
and tuning coils are visible. The illustration below indicates
the general content and connections on the circuit boards.

31.0(5) kHz to 85(1) kHz. The main inductors are multi-
layer coils with a diameter of 4.0(3) cm and lengths be-
tween 5 cm to 9 cm. The winding numbers range between
80 and 270 Inside the coils secondary coils for the feed-
back circuit are mounted. The can be rotated to tune the
amount of feedback. The inductors for link resonators
hold next to the feedback coil another coil, that is con-
nected in series with the outer coil, and allows the links
to be tuned from 53 kHz to 64 kHz.

Mixer core. The interaction term of the U(1) Hamil-
tonian is a QxQ′xQx+1 coupling (see Eq. A2), which is
symmetric under exchange and therefore the implemen-
tation must have the same symmetry under exchange
of its connectors. Furthermore the voltage of all addi-
tional nodes introduced by the interaction need to be
fully determined by the site variables, in order to not
introduce additional canonical variables. The Kirchhoff
current laws in Eq. (A1) state the interaction term as
voltage multiplication (since Φ̇ = V ) that is coupled ca-
pacitively into the site with the additional time deriva-
tive. In our circuit the voltage multiplication is achieved
by explicitly inserting analog voltage multipliers (IC part
number AD633), also called mixers. The voltage multi-
pliers in our circuit support an output voltage between
±10 V. Multipliers have an internal scale appearing as
Vref = 10 V in the equations of motion. Each interaction
term in the KCL requires its own multiplier which sums
up to three multipliers per link. The resulting coupling
strength J is given by Eq. (A6) and depends on Vref as
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well as the free resonance frequencies of the resonators.
For the measurement of the interactions in Fig. 4 with
m = 2.5(2) kHz, it evaluates to J = 0.92(5) kHz.

Initializers. Initial conditions of the circuit are set by
cutting of external currents at t = 0. External current
are supplied by one MOSFET per oscillator that isolates
the circuit from the external source at t > 0. Initial
currents are tunable with on-board potentiometers.

Feedback. By adding feedback, dissipation effects can
be reduced. Typical quality factors of our oscillators are
between 50 to 80. Longer time traces than this dissi-
pation time scale are required to reach the frequency
resolution of the spectra shown above. Each oscillator
is connected to a biased bipolar junction transistor that
couples the signal picked up by the feedback coil back into
the oscillator. Careful tuning of the feedback strength is
required to achieve both long time traces and small gauge
violation.

Appendix C: Conservation laws

As discussed in the main text, our Hamiltonian has
the following local continuous symmetry, parameterized
by the phase θx:

ax → ax e
iθx , (C1a)

bx → bx e
i(−1)x(θx−θx+1) . (C1b)

This symmetry transformation is a canonical transfor-
mation of the complex variables and as such can be ex-
pressed using Poisson brackets w. r. t. a generator func-
tion Gx, that depends on the complex variables local to
x [49],

− i ∂z = {z, Gx} dθx , (C2)

where z denotes a vector of all canonical variables ax and
bx (not including their complex counterpart), and ∂z is
their change under the infinitesimal gauge transforma-
tion. For this purpose, the Poisson brackets are defined
as

{f, g} =

l∑

x=1

(
∂f

∂ax

∂g

∂a∗x
− ∂f

∂a∗x

∂g

∂ax

)

+

l−1∑

x=1

(
∂f

∂bx

∂g

∂b∗x
− ∂f

∂b∗x

∂g

∂bx

)
.

(C3)

Upon integration of Eq. (C2), one finds the generator

Gx = a∗x ax + (−1)x (b∗x−1 bx−1 + b∗x bx) . (C4)

As a generator of a symmetry, Gx is invariant under time
evolution and fulfills {G, H} = 0. In the main text we
have identified the charge density ρx = a∗x ax and electric
field Ex = −(−1)x b∗x bx to write the generator in the very
recognizable fashion of Gauss’s law,

Gx = ρx − Ex + Ex−1 . (C5)

Fig. 1C shows measurements in our circuit. The tun-
ing for this measurement ism1...5 = 0.9(2), 0.9(2), 1.3(2),
1.0(2), 1.7(2)kHz. Measurements of the circuit produce
voltage signals of the oscillators. Peaks in the voltage sig-
nal are used to reconstruct an envelope, which is also the
amplitude in the rotating frame. The voltage amplitudes
are used to infer the oscillator energies. An offset and
an exponentially decaying background are removed from
the energies, in order to center energy variations around
zero. The energy variations Ex are then expressed in
dimensionless terms using a∗x ax = f0Ex/2CV 2

0 fx (links
analogously). The results in Fig. 1C show that the con-
servation is much better on odd sites than on even sites,
because even sites are more sensitive to the feedback cir-
cuit. The violation on odd sites and on short time scales
faster than 0.5 kHz is consistent with the violation ex-
pected from the rotating wave approximation.

Appendix D: Long-range interactions

Starting from Hamiltonian (1), we make the canonical
variable change

bx =
√
n′xe

iφx (D1)

on the links only. Sites ax stay unchanged. We then have
the Hamiltonian

H = J

{ ∑

x odd

(
a∗x
√
n′xe
−iφx ax+1 + c. c.

)

+
∑

x even

(
a∗x
√
n′xe

+iφx ax+1 + c. c.
)
}

−m
l∑

x=1

(−1)x a∗x ax. (D2)

The phases φx can be eliminated by performing a canon-
ical transformation on the matter fields [7, 50, 51]. The
transformation is controlled by the phase φx of the gauge
fields:

ax → ax
∏

y<x

e−(−1)
yiφy . (D3)

The Gauss law Gx = nx + (−1)x(n′x−1 + n′x), where
nx = a∗x ax, allows us to rewrite the amplitudes of the
gauge field using only amplitudes of the matter sites and
the constant Gx:

n′x = (−1)x
∑

y<x

(Gy − ny). (D4)

The variables n′x and φx can thus be removed from the set
of canonical variables and the gauge field does not appear
anymore in the remaining Hamiltonian. The n′x depend
on all previous occupation numbers and form long-range



9

interaction terms. When writing out the n′x, the new
Hamiltonian looks like

H = J

{
√
n1 −G1 a

∗
1 a2 +

√
G1 +G2 − n1 − n2 a∗2 a3

+
√
n1 + n2 + n3 −G1 −G2 −G3 a

∗
3 a4

+ · · ·+ c. c.

}

−m
l∑

x=1

(−1)x a∗x ax. (D5)

The coupling of one matter site to the next depends on
the gauge field between them, and the gauge field is by

Gauss’s law the sum of all charges on the left of the
chain plus some constant for the boundary (see Fig. 4A).
The coupling from odd to even sites increases with larger
gauge fields, while the coupling from odd to even sites
decreases with stronger gauge fields. There is now a
perceived directionality to the Hamiltonian, which arises
from the choice in summing over Gauss’s law.

Unlike conventional lattice gauge theories, e.g., the
Schwinger model, our Hamiltonian does not have an elec-
tric energy term (b∗x bx) through which long-range inter-
actions can arise. In our case, the long-range interac-
tion appears because link amplitudes n′x are not constant,
which in conventional lattice gauge theories is typically
not the case.

Appendix E: Perturbation theory for non-driven system

We now carry out perturbation theory to provide an analytic footing for our experimental results. We start with
the Hamiltonian (1), and assume we are in the thermodynamic limit. This reduces our model to a unit cell of two
matter sites and two gauge links with periodic boundary conditions described by the Hamiltonian

H = m
(
a∗1a1 − a∗2a2

)
+ J

[
a∗1
(
b∗1 + b∗2

)
a2 + a1

(
b1 + b2

)
a∗2
]
. (E1)

We see that the dynamics of the b field is the same whether on an odd or even link. As such, we can rewrite our
Hamilton’s equations simply as

idτa1 = −ma1 − 2Jb∗a2, (E2a)
idτa2 = ma2 − 2Jba1, (E2b)
idτ b = −Ja∗1a2. (E2c)

The full solution of the b field in terms of the a fields is

b(τ) = B + iJ

∫ τ

0

ds a∗1(s)a2(s). (E3)

Employing perturbation theory with J/m as small parameter, we now solve up to third order for the a and b fields.
The zeroth-order contribution in J is

b(0)(τ) = B (E4a)

a
(0)
1 (τ) = A1e

imτ , (E4b)

a
(0)
2 (τ) = A2e

−imτ . (E4c)

We can now solve for the first-order contribution to the b field as follows:

b(1)(τ) = iJ

∫ τ

0

ds a
(0)∗
1 (s)a

(0)
2 (s) = iJA∗1A2

∫ τ

0

ds e−2ims =
J

2m
A∗1A2

(
1− e−2imτ

)
. (E5)

The first-order contributions to the a fields can be found by solving

idτa
(1)
1 = −ma(1)1 − 2Jb(0)∗a(0)2 = −ma(1)1 − 2JA2B∗e−imτ , (E6a)

idτa
(1)
2 = ma

(1)
2 − 2Jb(0)a

(0)
1 = ma

(1)
2 − 2JA1Beimτ , (E6b)

the solutions to which are

a
(1)
1 (τ) =

J

m
A2B∗

(
eimτ − e−imτ

)
, (E7a)

a
(1)
2 (τ) =

J

m
A1B

(
eimτ − e−imτ

)
. (E7b)
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Consequently, the second-order contribution to the b field is

b(2)(τ) = iJ

∫ τ

0

ds
[
a
(0)∗
1 a

(1)
2 + a

(1)∗
1 a

(0)
2

]

= i
J2

m

∫ τ

0

dsB
(
|A1|2 − |A2|2

) (
1− e−2ims

)

=
J2

m
B
(
|A1|2 − |A2|2

) [
iτ − 1

2m

(
1− e−2imτ

)]
, (E8)

which again carries the same frequency as the first-order contribution. We now continue to the second-order contri-
bution in the a fields by solving

idτa
(2)
1 = −ma(2)1 − 2J

[
b(0)∗a(1)2 + b(1)∗a(0)2

]
= −ma(2)1 +

J2

m
A1

(
|A2|2 − 2|B|2

) (
eimτ − e−imτ

)
, (E9a)

idτa
(2)
2 = ma

(2)
1 − 2J

[
b(0)a

(1)
1 + b(1)a

(0)
1

]
= ma

(2)
2 −

J2

m
A2

(
|A1|2 + 2|B|2

) (
eimτ − e−imτ

)
, (E9b)

the solutions for which are

a
(2)
1 (τ) = − J2

2m2
A1

(
|A2|2 − 2|B|2

) [
(2imτ − 1)eimτ + e−imτ

]
, (E10a)

a
(2)
2 (τ) =

J2

2m2
A2

(
|A1|2 + 2|B|2

) [
eimτ − (2imτ + 1)e−imτ

]
. (E10b)

The third-order contribution to the b field is

b(3)(τ) = iJ

∫ τ

0

ds
[
a
(0)∗
1 a

(2)
2 + a

(1)∗
1 a

(1)
2 + a

(2)∗
1 a

(0)
2

]
. (E11)

The third-order contribution to the a fields is obtained by solving

idτa
(3)
1 = −ma(3)1 − 2J

[
b(0)∗a(2)2 + b(1)∗a(1)2 + b(2)∗a(0)2

]

= −ma(3)1 + c1e
3imτ + c2e

imτ + (c3t+ c4)e−imτ , (E12a)

idτa
(3)
2 = ma

(3)
1 − 2J

[
b(0)a

(2)
1 + b(1)a

(1)
1 + b(2)a

(0)
1

]

= ma
(3)
1 + (d1t+ d2)eimτ + d3e

−imτ + d4e
−3imτ , (E12b)

c1 =
J3

m2
A2

1A∗2B, (E12c)

c2 = − J
3

m2

[
A2B∗

(
2|A1|2 − |A2|2 + 2|B|2

)
+ 2A2

1A∗2B
]
, (E12d)

c3 = 2i
J3

m
A2B∗

(
2|A1|2 − |A2|2 + 2|B|2

)
, (E12e)

c4 =
J3

m2

[
A2B∗

(
2|A1|2 − |A2|2 + 2|B|2

)
+A2

1A∗2B
]
, (E12f)

d1 = −2i
J3

m
A1B

(
|A1|2 − 2|A2|2 + 2|B|2

)
, (E12g)

d2 =
J3

m2

[
A1B

(
|A1|2 − 2|A2|2 + 2|B|2

)
−A∗1A2

2B∗
]
, (E12h)

d3 = − J
3

m2

[
A1B

(
|A1|2 − 2|A2|2 + 2|B|2

)
− 2A∗1A2

2B∗
]
, (E12i)

d4 = − J
3

m2
A∗1A2

2B∗, (E12j)

the solutions for which are

a
(3)
1 (τ) = − c1

2m
e3imτ −

[
ic2t+

J3

m3
A2B∗

(
2|A1|2 − |A2|2 + 2|B|2

)]
eimτ +

2mc3τ + 2mc4 − ic3
4m2

e−imτ , (E13a)

a
(3)
2 (τ) = −2md1τ + 2md2 + id1

4m2
eimτ −

[
id3τ −

J3

m3
A1B

(
|A1|2 − 2|A2|2 + 2|B|2

)]
e−imτ +

d4
2m

e−3imτ . (E13b)
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Figure 6. Spectrum of the 5-site lattice depending on detuning ∆ = ∆x. Dashed lines indicate frequency components of first
order perturbation theory. Simulation of the U(1) Hamiltonian shows higher order components which are also discernible in
the measurements. Dotted lines in sites indicate ±3m frequency components and in links +2m components from higher orders
of perturbation theory.

The results of the perturbation theory are compared to the experimental data and the numerical predictions of the
spectrum in Fig. 6.

Appendix F: Perturbation theory for driven system

For the perturbation theory in the driven case, we as-
sume a setup as described in the main text: Only the
links are initialized at t = 0 and sites are left empty. The
first site is driven with a harmonic signal, see Eq. (A10a).
We know from measurements that the driving signal
propagates onto the other sites with exponentially de-
creasing amplitude over distance (Fig. 7). The reason
for this are the staggered site frequencies, such that the
driving is off-resonant at least at every second site. This
motivates the approximation that the back-action of the
second onto the first site and the back-action of the third
onto the second site can be neglected. Then the equa-
tions of motion of the second site become linear. With
the exponential structure of the amplitudes, this proce-
dure can be repeated along the lattice.

Without back-action of the second site, the first site
relaxes to match the driving signal a1 = Aeiντ , ν =
fdrv/f0. The equations of motion for the link and second
site ax+1 (without terms including the third site) form a
two-level system:

(
ḃx
ȧx+1

)
= i

(
0 Ja∗x(τ)

Jax(τ) −m

)(
bx
ax+1

)
. (F1)
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Figure 7. Observed exponential decline of oscillator voltage
amplitudes along lattice when driving first site and compari-
son to the next neighbor coupling mediated by links calculated
in Appendix E. This exponential decline is used as hierarchy
for the perturbation theory in the driven case.

With the variable change

bx → b′x b = e−
1
2 i(m+ν)τ b′ (F2a)

ax+1 → a′x+1 ax+1 = e−
1
2 i(m−ν)τa′x+1 (F2b)

the time dependence and energy offset are removed:
(
ḃ′x
ȧ′x+1

)
= i

(
+ 1

2 (ν +m) JA∗

JA − 1
2 (ν +m)

)(
b′x
a′x+1

)
. (F3)
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Eigenvalues of the matrix are

µo(ν,A) = ±1

2

√
(ν +m)2 + 4J2|A|2 (F4)

and solutions have the shape

bx = c1e
+i(µo− 1

2 (m+ν))τ + c2e
−i(µo+

1
2 (m+ν))τ , (F5a)

ax+1 = c3e
−i(µo+

1
2 (m−ν))τ + c4e

+i(µo− 1
2 (m−ν))τ . (F5b)

Prefactors ci depend on parameters ν +m, JA, and the
initial state of bx and ax+1. We do not calculate them
here explicitly.

The calculation above holds for any given odd x along
the chain to calculate the behavior of its following even
site. Next we look at the other case: given a solution
ax = Aeiντ with even x, we calculate the dynamics of
the next or previous odd site ax±1:

(
ḃ∗x
ȧx+1

)
= i

(
0 −Ja∗x(τ)

Jax(τ) m

)(
b∗x
ax+1

)
. (F6)

The appropriate variable change is

b∗x → b∗′x b∗ = e−i
1
2 (m−ν)τ b∗′ (F7a)

ax+1 → a′x+1 ax+1 = e+i
1
2 (m+ν)τa′x+1 (F7b)

to reach the expression
(
ḃ∗′x
ȧ′x+1

)
= i

(
− 1

2 (m− ν) −JA∗
JA + 1

2 (m− ν)

)(
b∗′x
a′x+1

)
. (F8)

Eigenvalues of the matrix are

µe(ν,A) = ±1

2

√
(m− ν)2 − 4J2|A|2. (F9)

and the solutions have the frequency components

bx = ei(µe+
1
2 (m−ν))τ) + ei(−µe+

1
2 (m−ν))τ), (F10a)

ax+1 = ei(µe+
1
2 (m+ν))τ) + ei(µe− 1

2 (m+ν))τ). (F10b)

The prediction for the frequency shift in Fig. 4 is based
on measured site amplitudes Ax shown in Fig. 7 (made
dimensionless with scale V0 = 1 V). The red line in the
spectrum of V2 is

fU2(ν)/f0 = µo(ν,A1)− (m− ν)/2− ν. (F11)

Predictions for the long range interactions in Fig. 4 use
the iterated approach: The frequency of the third site ν3
is based on the solution of the second site:

ν2 = µo(ν,A1)− (m− ν)/2, (F12a)
ν3 = µe(ν2, A2)− (m− ν2)/2, (F12b)
ν4 = µo(ν3, A3)− (m− ν3)/2, (F12c)
ν5 = µe(ν2, A2)− (m− ν2)/2. (F12d)

The frequency shifts are calculated relative to the driving:
fU = νf0 − fdrv. Fig. 8 shows the full spectrum from
which Fig 4 is calculated. Also shown are comparisons
to numerical simulations of Hamilton’s equations in the
rotating frame with and without the empirical dissipation
term.
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Measurements
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Figure 8. Comparison of measurements and simulations of the driven lattice, which is also the basis for Fig. 4. As a guide
for the eye, the staggered levels from perturbation theory in the large mass limit are indicated in black. Without driving,
amplitudes and the frequency shift diverge when driving on resonance. With the empirical dissipation term, features in the
simulation match the measurements.
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